首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents a study of an ongoing research project on the use of new composites for enhancement of the performance of concrete beams. A plain concrete beam was externally bonded with wire mesh–epoxy composite using one to five wire mesh layers. The flexural performance of the beam specimens bonded with wire mesh layers was compared with the beam specimens bonded with carbon fibre as well as a hybrid of wire mesh–epoxy–carbon fibre composite. The test results show that the use of wire mesh with epoxy is an efficient way to improve the flexural performance of concrete beam specimens. The increase in wire mesh layers significantly enhances the flexural strength, cracking behaviour and energy absorption capability. In comparison with carbon fibre, wire mesh–epoxy composite is more efficient in flexural strength and ductility. In addition, it was found that a concrete beam bonded with a hybrid wire mesh–epoxy–carbon fibre composite has significantly more energy absorption capability compared to specimens bonded with only carbon fibre.  相似文献   

2.
The lack of data related to durability is one major challenge that needed to be addressed prior to the widespread acceptance of natural fibre reinforced polymer composites for engineering applications. In this work, the combined effect of ultraviolet (UV) radiation and water spraying on the mechanical properties of flax fabric reinforced epoxy composite was investigated to assess the durability performance of this composite used for civil engineering applications. Specimens fabricated by hand lay-up process were exposed in an accelerated weathering chamber for 1500 h. Tensile and three-point bending tests were performed to evaluate the mechanical properties. Scanning electron microscope (SEM) was used to analyse the microstructures of the composites. In addition, the durability performance of flax/epoxy composite was compared with synthetic (glass and carbon) and hybrid fibre reinforced composites. The test results show that the tensile strength/modulus of the weathered composites decreased 29.9% and 34.9%, respectively. The flexural strength/modulus reduced 10.0% and 10.2%, respectively. SEM study confirmed the degradation in fibre/matrix interfacial bonding after exposure. Comparisons with other composites implies that flax fabric/epoxy composite has potential to be used for civil engineering applications when taking its structural and durability performance into account. Proper treatments to enhance its durability performance will make it more comparable to synthetic fibre reinforced composites when considering as construction building materials.  相似文献   

3.
Hemp fibre reinforced unsaturated polyester composites (HFRUPE) were subjected to low velocity impact tests in order to study the effects of non-woven hemp fibre reinforcement on their impact properties. HFRUPE composites specimens containing 0, 0.06, 0.10, 0.15, 0.21 and 0.26 fibre volume fractions (Vf) were prepared and their impact response compared with samples containing an equivalent fibre volume fraction of chopped strand mat E-glass fibre reinforcement. Post-impact damage was assessed using scanning electron microscopy (SEM). A significant improvement in load bearing capability and impact energy absorption was found following the introduction hemp fibre as reinforcement. The results indicate a clear correlation between fibre volume fractions, stiffness of the composite laminate, impact load and total absorbed energy. Unreinforced unsaturated polyester control specimens exhibited brittle fracture behaviour with a lower peak load, lower impact energy and less time to fail than hemp reinforced unsaturated polyester composites. The impact test results show that the total energy absorbed by 0.21 fibre volume fraction (four layers) of hemp reinforced specimens is comparable to the energy absorbed by the equivalent fibre volume fraction of chopped strand mat E-glass fibre reinforced unsaturated polyester composite specimens.  相似文献   

4.
The impact and flexural post-impact behaviour of ternary hybrid composites based on epoxy resin reinforced with different types of fibres, basalt (B), flax (F), hemp (H) and glass (G) in textile form, namely FHB, GHB and GFB, has been investigated. The reinforcement volume employed was in the order of 21–23% throughout. Laminates based exclusively on basalt, hemp and flax fibres were also fabricated for comparison. Hybrid laminates showed an intermediate performance between basalt fibre reinforced laminates on the high side, and flax and hemp fibre reinforced laminates on the low side. As for impact performance, GHB appears to be the worst performing hybrid laminate and FHB slightly overperforms GFB. In general, an increased rigidity can be attributed to all hybrids with respect to flax and hemp fibre composites. The morphological study of fracture by SEM indicated the variability of mode of fracture of flax and hemp fibre laminates and of the hybrid configuration (FHB) containing both of them. Acoustic emission monitoring during post-impact flexural tests confirmed the proneness to delamination of FHB hybrids, whilst they were able to better withstand impact damage than the other hybrids.  相似文献   

5.
The present work investigates tensile and flexural behavior of untreated New Zealand flax (Phormium tenax) fiber reinforced epoxy composites. Two series of laminates were produced using the same reinforcement content (20 wt%), arranged either as short fibers or quasi-unidirectional ones. Composites reinforced using quasi-unidirectional fibers showed higher modulus and strength both in tensile and flexural loading, when compared to neat epoxy resin. Short fiber composites, although still superior to epoxy resin both for tensile and flexural moduli, proved inferior in strength, especially as concerns tensile strength. These results have been supported by scanning electron microscopy (SEM), which allowed characterizing fiber–matrix interface, and by acoustic emission (AE) analysis, which enabled investigating failure mechanisms. In addition, thermal behavior of both untreated phormium fibers and composites has been studied by thermogravimetric analysis (TGA), revealing the thermal stability of composites to be higher than for phormium fibers and epoxy matrix alone.  相似文献   

6.
The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural modulus of the composites is consistently increased when the flax fibre fabrics are replaced by glass fibre fabrics from the inner layers to the outer layers. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the flax fibre composites. This needs to be addressed in further work.  相似文献   

7.
Tensile failure and fracture behaviour of parallel laid twisted flax fibre reinforced low melting polyethylene terephthalate (LPET) composites were investigated. The tensile failure results of the model specimens were compared with AE results in terms of amplitude, energy and counts. The failure results of the flax fibre LPET composites exhibited mainly matrix crack initiation as a brittle failure for low, medium and high fibre contents. Since the composites at high fibre contents have higher porosity content, they show higher strain to failure, higher variation in the tensile results and have different appearances on their fracture surfaces than those of the composites at low and medium fibre contents.  相似文献   

8.
Low viscosity thermoset bio-based resin was synthesised from lactic acid, allyl alcohol and pentaerythritol. The resin was impregnated into cellulosic fibre reinforcement from flax and basalt and then compression moulded at elevated temperature to produce thermoset composites. The mechanical properties of composites were characterised by flexural, tensile and Charpy impact testing whereas the thermal properties were analysed by dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results showed a decrease in mechanical properties with increase in fibre load after 40 wt.% for the neat flax composite due to insufficient fibre wetting and an increase in mechanical properties with increase fibre load up to 60 wt.% for the flax/basalt composite. The results of the ageing test showed that the mechanical properties of the composites deteriorate with ageing; however, the flax/basalt composite had better mechanical properties after ageing than the flax composite before ageing.  相似文献   

9.
In the past years studies were conducted on natural fibre reinforced polymer composites to observe their mechanical properties in order to decide their industrial applications. These composites have already been used in many applications from aerospace to sporting equipment. These green composites can be used as a replacement for synthetic composites. This is because the natural fibres are eco-friendly, biodegradable, renewable, etc. In this work, an attempt is made to reinforce fly ash, coir fibre and sugarcane fibre with epoxy polymer matrix. Central composite design under response surface methodology (RSM), one of the approaches of design of experiments (DOE) is used to determine optimum sample preparation conditions of fly ash, coir fibre and sugarcane fibre. Both tensile and flexural (three-point bending) tests are conducted on these fabricated composites to determine their materialistic characteristics. Analysis of variance (ANOVA) is carried out using Minitab software to find the influence of fly ash, coir fibre, sugarcane fibre on composites. Regression equations obtained from analysis of variance is used to calculate values. Experimental and calculated values are compared and their error % are calculated and tabulated. Response surface optimization study is carried to find the optimized parameters of composites. It is observed that, increase in wt.% of coir fibre and decrease in wt.% of fly ash and sugarcane fibre, increases yield stress and these parameters have mixed impact on ultimate tensile stress. The addition of fly ash, coir fibre and sugarcane fibre in low percentages increases Young's modulus. Increase in wt.% of fly ash and coir fibre and decrease in wt.% of sugarcane, increases flexural modulus and flexural stress.  相似文献   

10.
《Composites》1990,21(3):205-215
The addition of small amounts of short carbon fibres to cement causes a great increase in the composite material toughness and tensile, flexural, and impact strength. In order to understand how cement properties are improved by carbon fibres and to understand the level of adhesion and interfacial failure mode which are necessary to obtain optimum carbon fibre reinforced cement (CFRC) properties, various admixtures were included in cement and CFRC. Their effects on the carbon fibre-cement adhesion and the composite material properties were determined using fibre pull-out and composite material flexural tests. The addition of latex to CFRC, and hot water curing of CFRC dramatically increase fibre-matrix adhesion. Both latex (with an anti-foam agent) and hot water curing increase flexural strength by 40% over adhesion changes the failure mode from fibre pull-out to fibre rupture. Optimum strength and toughness of CFRC result from an intermediate level of fibre-matrix adhesion.  相似文献   

11.
In recent years, the use of flax fibres as reinforcement in composites has gained popularity due to an increasing requirement for developing sustainable materials. Flax fibres are cost-effective and offer specific mechanical properties comparable to those of glass fibres. Composites made of flax fibres with thermoplastic, thermoset, and biodegradable matrices have exhibited good mechanical properties. This review presents a summary of recent developments of flax fibre and its composites. Firstly, the fibre structure, mechanical properties, cost, the effect of various parameters (i.e. relative humidity, various physical/chemical treatments, gauge length, fibre diameter, fibre location in a stem, oleaginous, mechanical defects such as kink bands) on tensile properties of flax fibre have been reviewed. Secondly, the effect of fibre configuration (i.e. in forms of fabric, mat, yarn, roving and monofilament), manufacturing processes, fibre volume, and fibre/matrix interface parameters on the mechanical properties of flax fibre reinforced composites have been reviewed. Next, the studies of life cycle assessment and durability investigation of flax fibre reinforced composites have been reviewed.  相似文献   

12.
This study addresses the effect of basalt fibre hybridization on the damage tolerance of carbon/epoxy laminates subjected to laser shock wave tests. Interply hybrid specimens with two different stacking sequences (sandwich-like and intercalated) were tested at different laser intensities and residual post-shock properties of the different configurations have been characterized by quasi-static three point bending tests monitored by acoustic emission. Results indicate that the best compromise in terms of both quasi-static properties (2% reduction in flexural strength compared to all carbon laminates) and damage tolerance appears to be the sandwich-like structure with basalt fibre skins. In particular, this configuration exhibited the highest damage tolerance among the hybrids, with a percent decrease in flexural strength of about 5% compared to 15% in the case of all carbon laminates. Damage induced by laser shock testing in carbon-basalt woven fabric/epoxy composites is mainly inter-ply delamination. This study also highlights the tougher behaviour of basalt plies in response to a sudden application of load compared to carbon layers with a favourable hybridization effect.  相似文献   

13.
Hybrid materials of any kind are the keynote for today’s demands. This paper deals with one of such hybrid composite made of natural fibres namely, banana and flax fibres. The structural build-up is such that one layer of banana fibre is sandwiched between two layers of flax fibres by hand layup method with a volume fraction of 40% using Epoxy resin and HY951 hardener. Glass fibre reinforcement polymer (GFRP) is used for lamination on both sides. This lamination also increases the overall mechanical properties along with better surface properties. The properties of this hybrid composite are determined by testing its tensile, impact, and flexural loads using a Universal testing machine. Thermal properties are analysed and hybrid composites of flax and banana with GFRP have better thermal stability and flame resistance over flax, banana with GFRP single fibre hybrid composites. Morphological analysis is done using Scanning Electron Microscope (SEM). The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single fibre composites.  相似文献   

14.
《Composites Part B》2001,32(1):21-31
The interest of using fibre reinforced plastic (FRP) materials in rehabilitating damaged concrete structures respectively has been increased rapidly in recent years. In this paper, the structural behaviours of the glass–fibre composite strengthened concrete structures subjected to uni-axial compression and three point bending tests are discussed through experimental studies. Two types of concrete structure are used in present study, they are concrete cylinder and rectangular concrete beam. Discussion on the environmental effects of composite strengthened reinforced concrete (RC) structures is also addressed. Experimental results show that the use of glass–fibre composite wrap can increase the load carrying capacity of the plain concrete cylinders with and without notch formation. The flexural load capacity of the concrete beam increases to more than 50% by bonding 3 layers of glass–fibre composite laminate on the beam tension surface. Direct hand lay up method gives better strengthening characteristic in term of the ultimate flexural load compared with pre-cured plate bonding technique. The flexural strengths of composite strengthened RC beams submerged into different chemicals solution for six months are increased compared with the RC beams without strengthening. The strength of the concrete structure is seriously attacked by strong acids.  相似文献   

15.
This paper aims at investigating the hybridisation effect on the diffusion kinetic and the tensile mechanical behaviour of flax–glass fibres reinforced epoxy composites. For this purpose, hybrid composites composed of flax and glass fibre laminates with different stacking sequences were consolidated by compression moulding and subjected to environment ageing. The obtained results show that the water uptake and the diffusion coefficient are clearly reduced by the addition of glass fibre layers in flax laminate. The ageing conditions performed show that the flax–glass hybridisation presents a positive effect in a wet environment at low temperatures (∼20 °C) in the Young’s modulus and the tensile strength. For example, the Young’s modulus fell by 50% and 41% for hybrid laminates with 6% and 11% of glass fibres, and by 67% for the Flax laminate. However, the flax–glass hybridisation was not necessarily a relevant choice when the hybrid laminates were exposed in a wet environment at high temperatures. Indeed, at 55 °C, this hybridisation had a negative effect on the tensile strength and on the specific tensile strength.  相似文献   

16.
《Composites Part A》2007,38(10):2109-2115
Leaf fibres from Phormium tenax (harakeke, New Zealand flax) were pulped at 170 °C with NaOH and anthraquinone. The pulp was wet laid to form mats, which were used to reinforce epoxy composites. The flexural modulus was almost as high as that measured for epoxy reinforced with glass chopped strand mat at the same weight fraction. The flexural strength was two-thirds that of the glass-reinforced composite. Failure was abrupt. SEM images showed torn fragments of fibre cell walls protruding from the fracture surface, indicating strong interfacial bonding. Good mechanical performance was attributed to the rarity of kink bands in the individual fibre cells, along with wrinkled cell-wall surfaces that enhanced the area of the fibre–matrix interface.  相似文献   

17.
《Composites Part A》2004,35(1):11-16
A new cost effective method of fabricating strong plywood-type composites from strips of hemp fibres is reported, which takes advantage of the first frosts in autumn. The extracellular ice formed in the plants detaches the fibre layers from the woody material. In a three-point bending test 20×20×100 mm3 fibre/epoxy test beams with a similar structure to that of plywood were found to be of comparable strength, the highest flexural strength being 65 MPa. A two-component epoxy resin (Araldite®) was used as an adhesive. The mass fraction of the strips was 50–80%. The compressive stress during the manufacturing process was 0.1 or 8 MPa. The good appearance, manufacturing properties and workability of the biofibre composites make them suitable especially for floor and furniture manufacture.By pressing together 48 layers of hemp or flax mats which were originally intended for insulation purposes composites were produced that were even stronger than those made from strips. Hemp was spring harvested, which somewhat reduced the strength of fibre bundles. The great advantage of spring harvesting hemp fibre is that no artificial retting or drying is needed which makes the industrial raw materials, and therefore the final products, economically attractive. The highest flexural strengths of the test beams were around 140 MPa and stiffness 6 GPa with a fibre mass fraction of 50–60%. A 6 MPa compressive stress was applied during the manufacturing process.  相似文献   

18.
This study investigates the influence of the physical structure of flax fibres on the mechanical properties of polypropylene (PP) composites. Due to their composite-like structure, flax fibres have relatively weak lateral bonds which are in particular present in flax fibres that are often used in natural fibre mat reinforced thermoplastics (NMT). These weak bonds can be partly removed by combing the fibres. In order to study the influence of the physical structure of flax fibres on NMT tensile and flexural properties, uncombed and combed flax fibre reinforced PP composites were manufactured via a wet laid process. The influence of improved fibre-matrix adhesion was studied using maleic-anhydride grafted PP. Results indicated that the flax physical structure has a significant effect on flax-PP composite properties and that the flax fibre reinforced PP properties are similar to values predicted with existing micromechanical models. The tensile modulus of flax-PP composites can fairly compete with commercial glass mat reinforced thermoplastic (GMT) modulus, the strength, however, both tensile and flexural, can not. In order to rise the strength of flax fibre reinforced PP composites to the level of GMT strength, the flax fibres have to be further isolated to elementary flax fibres.  相似文献   

19.
Epoxy composite beams reinforced with a complex three-dimensional (3D) skeleton structure of nanocomposite microfibers were fabricated via micro-infiltration of 3D porous microfluidic networks with carbon nanotube nanocomposites. The effectiveness of this manufacturing approach to design composites microstructures was systematically studied by using different epoxy resins. The temperature-dependent mechanical properties of these multifunctional beams showed different features which cannot be obtained for those of their individual components bulks. The microfibers 3D pattern was adapted to offer better performance under flexural solicitation by the positioning most of the reinforcing microfibers at higher stress regions. This led to an increase of 49% in flexural modulus of a reinforced-epoxy beam in comparison to that of the epoxy bulk. The flexibility of this method enables the utilization of different thermosetting materials and nanofillers in order to design multifunctional composites for a wide variety of applications such as structural composites and components for micro-electromechanical systems.  相似文献   

20.
Composite materials have been used for both the structural strengthening of single RC elements and the complete retrofit of buildings for over 20 years. The composites mainly used are based on carbon, aramid or glass fibres, laminated with epoxy resins matrices. As known, one of the limitations of epoxy resins is the poor fire resistance of the matrix, and this can often influence how composite materials are used in building construction. In this research, an experimental investigation was carried out on reinforced concrete beams strengthened with unidirectional carbon fibre reinforcements and two-component resins of the Interpenetrated Polymer Network (IPN) water-based type that have greater thermal resistance than epoxy resins. In the experimental campaign, several beam specimens were reinforced using different strengthening configurations for bending and shear. In particular, the results obtained for the beams strengthened using water-based resins were compared with those for equivalent specimens strengthened with epoxy resins. The results showed good mechanical properties for the reinforcements with the IPN matrix, where the values of the collapse load were similar to those of the reinforcements with epoxy resins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号