首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, SiO2f/SiO2 composites reinforced by 3D four‐directional braided quartz preform were prepared by the silica sol‐infiltration‐sintering method in a relatively low sintering temperature (450 °C). To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural and shear loading. The microstructure and the fracture behaviour of the 3D four‐directional braided SiO2f/SiO2 composites were studied. The tensile strength, flexural strength and the in‐plane shear strength were 30.8 MPa, 64.0 MPa and 22.0 MPa, respectively. The as‐fabricated composite exhibited highly nonlinear stress–strain behaviour under all the three types of loading. The tensile and flexural fracture mechanisms were fully discussed. The fracture mode of the 3D four‐directional braided SiO2f/SiO2 composite in the Iosipescu shear testing was based on a mixed mechanism because of the multi‐directivity of the composite. Owing to low sintered temperature, the fibre/matrix interfacial strength was weak. The SiO2f/SiO2 composites showed non‐catastrophic behaviour resulting from extensive fibre pull‐out during the failure process.  相似文献   

2.
It is an obstacle issue for carbon nanotubes (CNTs) particularly for single-wall carbon nanotubes (SWCNTs) with nano-level dispersion in fiber reinforced polymer matrix composites. In this paper, the dispersing agents such as Volan and BYK-9076 were employed to treat SWCNTs to improve their dispersion in the glass fiber/epoxy (GF/EP) composites. The dispersing results of SWCNTs in composites were observed by scanning electron microscopy (SEM). Then the glass transition temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by dynamic mechanical thermal analysis (DMTA). Moreover, the flexural tests were performed on these composites. Based on the experiment results, the dispersion of SWCNTs was improved and the flexural property of SWCNTs/GF/EP composite was enhanced too.  相似文献   

3.
Mechanical performance of three oxide/oxide ceramic matrix composites (CMCs) based on Nextel 610 fibers and SiOC, alumina, and mullite/SiOC matrices respectively, is evaluated herein. Tensile strength and stiffness of all materials decreased at 1000 °C and 1200 °C, probably because of degradation of fiber properties beyond 1000 °C. Microstructural changes in the composites during exposure at 1000 °C and 1200 °C for 50 h reduce their flexural strength, fracture toughness and work of fracture. A literature review regarding mechanical properties of several oxide/oxide CMCs revealed lower influence of fiber properties on composite strength compared with elastic modulus. The tested composites exhibit comparable stiffness and strength but higher fracture toughness compared with average values determined from a literature review. Considering CMCs with different compositions, we observed an interesting linear trend between strength and fracture toughness. The validity of the linear relationship between fracture strength and flexural toughness for CMCs is discussed.  相似文献   

4.
ABSTRACT

The Hybrid composites are the emerging materials which uses two or more reinforced particles or fibres simultaneously. As potential applications of the composites, wood reinforced thermoplastic composites are commercially attractive for high volume applications, but their properties can be enhanced by adding Nano SiO2 particles. Wood powder and nano SiO2 were mixed with high density polyethylene as matrix material. Wood powder with fixed 5 wt. % and Nano SiO2 with varying weight % (3, 5, 7 wt. %) are reinforced in HDPE to manufacture composite materials by compression moulding process. Mechanical properties including tensile strength, flexural strength and Izod impact strength were evaluated and it was revealed that tensile strength and flexural strength were obtained maximum at 5 wt. % of Nano SiO2 and impact strength was obtained maximum at 3 wt. % of Nano SiO2.  相似文献   

5.
In this paper, dense short carbon fiber reinforced silicon carbide matrix composites had been fabricated by hot-pressed (HP) sintering using Al2O3 and La2O3 as sintering additives. The results showed that the combination of Al2O3 and La2O3 system was effective to promote densification of short cut carbon fiber reinforced silicon carbide composites (Cf/SiC). The whisker structure of silicon carbide was formed during the annealed treatment at 2023 K for 1 h. However, it was noted that this structure was not observed in the as-received HP material. The mechanism of forming whisker structure was not clear, but this kind of whisker structure was helpful to improve mechanical properties. The combination of grain bridging, crack deflection and whisker debonding would improve the fracture toughness of the Cf/SiC composites.  相似文献   

6.
The main aim of this paper is to develop kenaf-glass (KG) fibres reinforced unsaturated polyester hybrid composite on a source of green composite using sheet moulding compound process. Unsaturated polyester resin (UPE) and KG fibres in mat form were used at a ratio of 70:30 (by volume) with treated and untreated kenaf fibre. The kenaf fibre was treated with 6% sodium hydroxide (NaOH) diluted solution for 3 h using mercerization method. The hybrid composites were tested for flexural, tensile and Izod impact strength using ASTM D790-03, ASTM D618 and ASTM D256-04 standards respectively. The highest flexural, tensile and impact strength were obtained from treated kenaf with 15/15 v/v KG fibres reinforced UPE hybrid composite in this investigation.Scanning electron microscopy fractography showed fibre cracking, debonding and fibre pulled-out as the main fracture mode of composites and kenaf treated 15/15 v/v KG reinforced hybrid composite exhibited better interfacial bonding between the matrix and reinforcement compared to other combinations.  相似文献   

7.
SiC fiber-reinforced SiC–matrix ceramic composites (SiCf/SiC) were fabricated by vacuum infiltration of a SiC slurry into Tyranno™-SA grade-3 fabrics coated with a 200 nm-thick pyrolytic carbon (PyC) layer followed by hot pressing using a transient eutectic-phase. The density of the composite was improved using a special infiltration apparatus with a pressure gradient and alternating tape insertion between fabrics. Their overall properties were compared with those of monolithic SiC and composite containing chopped fibers. Although the density of the composites decreased with increasing fiber fraction, SiCf/SiC containing 50 vol.% fibers had a density of 3.13 g/cm3, which is the highest reported thus far. The composites containing continuous fibers had a maximum flexural strength of 607 MPa and a step increase in the stress–displacement behavior during the three-point bending test due to fiber reinforcement, which was not observed in the monolith.  相似文献   

8.
Vacuum assisted resin infusion molding (VARIM) was used to produce multiscale fiber reinforced composites (M-FRCs) based on carbon nanofibers dispersed in an epoxy resin. Flexural, interlaminar shear strength (ILSS) and thermomechanical tests are presented for the 0.1 wt% and 1 wt% M-FRCs and compared with the neat fiber reinforced composites (FRCs). Flexural strength and modulus increased (16–20%) and (23–26%), respectively for the 0.1 wt% and 1 wt% M-FRCs when compared to the neat FRCs. ILSS properties increased (6% and 25%) for the 0.1 wt% and 1 wt% M-FRCs, respectively when compared to neat FRCs. The glass transition temperatures (Tg) of both M-FRC samples were 25 °C higher than the neat FRC. Coefficients of thermal expansion (CTE) of the M-FRC samples improved compared to the neat FRC. The improved Tg and CTE properties in the M-FRC samples are attributed to synergistic interactions between the CNF/PNC matrix and glass fibers.  相似文献   

9.
In current study, weight percentage of nano silica and nano clay and also fiber orientation have been chosen as independent variables and the affect of these variables on tensile and izod impact strength of epoxy/glass fiber/SiO2/clay hybrid laminate composite has been investigated. Central composite design (CCD) which is subset of response surface methodology has been employed to present mathematical models as function of physical factors to predict tensile and impact behavior of new mentioned hybrid nano composite and also optimizing mentioned mechanical properties. Totally 20 experiments were designed with 6 replicates at center point. The maximum and minimum value of tensile strength were 450.90 MPa and 158.16 MPa which occurred in design levels 1 and 14 respectively, also the maximum and minimum of izod impact strength were 10.47 kJ/m2 and 2.56 kJ/m2 which occurred in design levels 13 and 14 respectively. The optimization results using optimization part of Minitab software showed that the best tensile strength was obtained 488.53 MPa and occurred in 3.5 wt% of nano silica, 1.1 wt% of nano clay and 9° of fiber orientation and after preparing and testing five samples average value of tensile strength was obtained about 480 MPa. Also the results showed that the best impact strength obtained from software was 11.35 kJ/m2 and occurred in 4.03 wt% of nano clay, 5 wt% of nano silica and 0° of fiber orientation. The optimization results also showed that tensile and impact strength at optimum values improved up to 6.4% and 203.5% compared to level 1 and 14 and 6.02% and 303.6% compared to level 13 and 14 respectively. In addition, the fracture surface morphologies of the quaternary nano composites were investigated by scanning electron microscopy (SEM).  相似文献   

10.
《材料科学技术学报》2019,35(12):2761-2766
Wave-transparent ceramic matrix composites for the high temperature use should possess excellent oxidation resistance. In this work, Si_3N_(4f)/SiO_2 composites with different fiber content were fabricated by filament winding and sol gel method. The oxidation resistance was investigated by tracking the response of flexural strength to the testing temperature. The results show that the flexural strength and toughness of the composites with fiber content of over 37% can reach high levels at around 175.0 MPa and 6.2 MPa m1/2, respectively. After 1 h oxidation at 1100?C, the flexural strength drops a lot but can still reach 114.4 MPa, which is high enough to ensure the safety of structures. However, when the oxidation temperature rises to 1200–1400?C, the flexural strengths continue to fall to a relatively low level at 50.0–66.4 MPa. The degradation at high temperatures is caused by the combination of over strong interfacial bonding, the damage of fiber and the crystallization of silica matrix.  相似文献   

11.
Carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites were prepared by isothermal chemical vapor infiltration. The phase compositions, microstructures and mechanical properties of the composites were investigated. The results show that the multilayered matrix consists of alternate layers of PyC and β-SiC deposited on carbon fibers. The flexural strength and toughness of C/(PyC–SiC)n composites with a density of 1.43 g/cm3 are 204.4 MPa and 3028 kJ/m3 respectively, which are 63.4% and 133.3% higher than those of carbon/carbon composites with a density of 1.75 g/cm3. The enhanced mechanical properties of C/(PyC–SiC)n composites are attributed to the presence of multilayered (PyC–SiC)n matrix. Cracks deflect and propagate at both fiber/matrix and PyC–SiC interfaces resulting in a step-like fracture mode, which is conducive to fracture energy dissipation. These results demonstrate that the C/(PyC–SiC)n composite is a promising structural material with low density and high flexural strength and toughness.  相似文献   

12.
Polyetheretherketone (PEEK) composites reinforced with carbon fibers (CFs) and nano-ZrO2 particles were prepared by incorporating nanoparticles into PEEK/CF composites via twin-screw extrusion. The effects of nanoparticles on the mechanical and wear properties of the PEEK/CF composites were studied. The results showed that the incorporation of nano-ZrO2 particles with carbon fiber could effectively enhance the tensile properties of the composites. The tensile strength and Young’s modulus of the composites increased with the increasing nano-ZrO2 content. The enhancement effect of the particle was more significant in the hybrid reinforced composites. The compounding of the two fillers also remarkably improved the wear resistance of the composites under water condition especially under high pressures. It was revealed that the excellent wear resistance of the PEEK/CF/ZrO2 composites was due to a synergy effect between the nano-ZrO2 particles and CF. CF carried the majority of load during sliding process and prevented severe wear to the matrix. The incorporation of nano-ZrO2 effectively inhibited the CF failures through reducing the stress concentration on the carbon fibers interface and the shear stress between two sliding surfaces. It was also indicated that the wear rates of the hybrid composites decreased with the increasing applied load and sliding distance under water lubrication. And low friction coefficient and low wear rate could be achieved at high sliding velocity.  相似文献   

13.
Barium titanate@silicon dioxide (BT@SiO2) core@shell fillers with an average diameter of 100 nm were prepared by a facile sol–gel synthesis. The thickness of SiO2 shell can be easily tuned by varying different mass ratio of BT to tetraethyl orthosilicate (TEOS). Polyvinylidene fluoride (PVDF) based composite films reinforced by BT and BT@SiO2 were fabricated via a solution casting method. The effects of SiO2 shell on morphology structure, wettability, interfacial adhesion, dielectric, electrical and energy performances of composites were investigated. Compared with BT/PVDF, BT@SiO2/PVDF composites show significantly increased breakdown strength due to enhanced interfacial adhesion and suppressed charge carrier conduction. Benefiting from enhanced breakdown strength and reduced remnant polarization induced by SiO2 shell, BT@SiO2/PVDF shows increased release energy density (energy density which can be fully discharged and applicable). Especially, BT@SiO2/PVDF with SiO2 thickness of 4 nm exhibits the highest release energy density of 1.08 J/cm3 under applied electric field of 145 kV/mm.  相似文献   

14.
采用原位合成与溶液共混相结合的方法,制备了短切碳纤维(Cf) 增强纳米羟基磷灰石(HA)-聚甲基丙烯酸甲酯(PMMA)生物复合材料。重点研究了短切碳纤维和纳米HA粒子表面改性前后对Cf/HA-PMMA复合材料微观结构和力学性能的影响。采用XRD、FTIR、XPS和SEM等对纳米HA粒子、碳纤维和复合材料的组成结构及断面的微观形貌等进行测试和表征,使用万能材料试验机测试其弯曲、压缩性能。结果表明:经表面氧化的碳纤维和用卵磷脂改性后的纳米HA与PMMA基体的界面结合性明显得到改善;采用卵磷脂表面改性后的纳米HA及表面预氧化后的碳纤维制备的Cf/HA-PMMA复合材料的弯曲性能得到显著提高,与采用未表面改性纳米HA和未表面氧化碳纤维所制备的Cf/HA-PMMA复合材料相比,弯曲、压缩强度和弹性模量分别提高1.6倍、2倍和4.3倍。  相似文献   

15.
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component.  相似文献   

16.
Abaca (Musa textilis)-reinforced polypropylene composites have been prepared and their flexural mechanical properties studied. Due to their characteristic properties, M. textilis has a great economic importance and its fibers are used for specialty papers. Due to its high price and despite possessing very distinctive mechanical properties, to date abaca fibers had not been tested in fiber-reinforced composites. Analysis of materials prepared showed that, in spite of reduced interface adhesion, flexural properties of the PP composites increased linearly with fiber content up to 50 wt.%. Addition of a maleated polypropylene coupling agent still enhanced the stress transfer from the matrix to the reinforcement fiber. As a result, composites with improved flexural properties were obtained. The mechanical properties of matrix and reinforcing fiber were evaluated and used for modelling both the flexural strength and modulus of its composites. In addition, the impact strength of materials was evaluated. Comparison with mechanical properties of composites reinforced with fiberglass points out the potentiality of abaca-reinforced polypropylene composites as suitable substitutes in applications with low impact strength demands.  相似文献   

17.
Three-dimensional braided carbon fiber-reinforced ZrC matrix composites, 3-D Cf/ZrC, were fabricated by Liquid metal infiltration process at 1200 °C. Porous carbon/carbon (Cf/C) composites with various densities were used as preforms, and the effects of Cf/C density on microstructure and properties of the 3-D Cf/ZrC composites were investigated. The results show that the composites are composed of carbon, ZrC and residual metal. Both microstructure and properties of the 3-D Cf/ZrC composites are apparently affected by Cf/C density. With increasing density of Cf/C preform, the density of 3-D Cf/ZrC composites decreases while the open porosity increases. The composites obtained from the Cf/C preform with a density of 1.12 g/cm3 have the best mechanical properties, with flexural strength of 286.2 ± 11.4 MPa, elastic modulus of 83.5 ± 6.8 GPa and fracture toughness of 9.2 ± 0.6 MPa m1/2. The composites exhibit excellent ablation resistance, and the mass rate and the linear ablation rate under an oxyacetylene torch are as low as 5.1 ± 0.4 mg s−1 and 1.1 ± 0.3 μm s−1, respectively.  相似文献   

18.
The toughening effect of the short carbon fibers in the ZrB2–ZrSi2 ceramic composites were investigated, where the ZrB2–ZrSi2 ceramics without carbon fibers were used as the reference. The mechanical properties were evaluated by means of flexural and SENB tests, respectively. The microstructure was characterized by SEM equipped with EDS. The results found that the short carbon fibers were uniformly incorporated in the ZrB2–ZrSi2 matrix and the relative density was about 97.92%. The flexural strength of short carbon fiber-reinforced ZrB2–ZrSi2 composites is 437 MPa; the fracture toughness and the work of fracture are 6.89 MPa m1/2 and 259 J/m2, respectively, which increased significantly in comparing with composites without fibers. The microstructure analysis revealed that the improved fracture toughness could be attributed to the fiber bridging, the fiber–matrix interface debonding and the fiber pullout, which consumed more fracture energy during the fracture process.  相似文献   

19.
《Materials Letters》2006,60(25-26):3197-3201
Oxidation behavior of a three dimensional (3D) Hi–Nicalon/SiC composite with CVD SiC coating was investigated in the simulated air using a thermogravimetric analysis (TGA) device. Below 1100 °C, the oxidation kinetics was controlled by gas diffusion through the defects in the SiC matrix and coating and resulted in the consumption of PyC interphase. The residual flexural strength did have not a remarkable fluctuation and the relationship between the residual strength to temperature and weight change to temperature of the 3D Hi–Nicalon/PyC/SiC composite indicated the same regularity. Above 1200 °C, the oxidation kinetics was controlled by oxygen diffusion through the SiO2 scale formed on the SiC coating and matrix. And the residual flexural strength of the composites was governed by the strength degradation of the Hi–Nicalon fiber. After oxidation, the fracture displacement in flexural tests increased with the weight loss increasing and the fracture mode showed a non-brittle pattern.  相似文献   

20.
《Materials Research Bulletin》2013,48(11):4811-4817
Graphite fiber reinforced Cu-based composites have good thermal conductivity, low coefficient of thermal expansion for heat sink applications. In these composites, the quality of interfacial bonding between the copper matrix and the graphite fibers has significant influence on the thermal properties of composites. In this study, two different carbide coatings (Mo2C or TiC) were synthesized on graphite fiber to promote the interfacial bonding in composites. Fibers/Cu composites had been produced by spark plasma sintering process. The results showed that the densification, interfacial bonding and thermal conductivity of coated composites were improved distinctly compared to that of uncoated ones. The enhanced composites present 16–44% increase of thermal conductivity in XY plane. An original theoretical model was proposed to estimate the interface thermal resistance. The result showed that the interfacial thermal resistance was largely reduced by one order of magnitude with the introduction of carbide interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号