首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strong, low density fibres have been favoured materials for ballistic protection, but the choice of fibres is limited for making body armour that is both protective and lightweight. In addition to developments of improved fibres, alternative approaches are required for creating more protective and lighter body armour. This paper reports on a study on hybrid fabric panels for ballistic protection. The Finite Element (FE) method was used to predict the response of different layers of fabric in a twelve-layer fabric model upon impact. It was found that the front layers of fabric are more likely to be broken in shear, and the rear layers of fabric tend to fail in tension. This suggested that using shear resistant materials for the front layer and tensile resistant materials for the rear layer may improve the ballistic performance of fabric panels. Two types of structure, ultra-high-molecular-weight polyethylene (UHMWPE) woven and unidirectional (UD) materials, were analyzed for their failure mode and response upon ballistic impact by using both FE and experimental methods. It was found that woven structures exhibit better shear resistance and UD structures gives better tensile resistance and wider transverse deflection upon ballistic impact. Two types of hybrid ballistic panels were designed from the fabrics. The experimental results showed that placing woven fabrics close to the impact face and UD material as the rear layers led to better ballistic performance than the panel constructed in the reverse sequence. It has also been found that the optimum ratio of woven to UD materials in the hybrid ballistic panel was 1:3. The improvement in ballistic protection of the hybrid fabric panels allows less material to be used, leading to lighter weight body armour.  相似文献   

2.
This paper presents experimental and numerical research regarding blunt trauma resistance of ten fabrics made of high strength fibers. Fabrics of various architecture were examined, including plain woven fabrics, unidirectional laminates and multiaxial fabrics. The fabrics were compared with respect to the depth of the depression formed and the amount of energy transferred to the backing during projectile impact. Absolute values of mentioned parameters were compared, as well as their values after normalization with respect to thickness and areal density of the fabrics. A numerical method for estimating the amount of energy transferred to the backing was proposed.Normalized results, obtained experimentally and numerically, proved that most of the analyzed fabrics provide a similar level of protection, but the best blunt trauma resistance is given by multiaxial fabrics and the least by plain woven fabrics. This study has also shown that the depth of the depression in the backing material is an insufficient parameter in describing protective properties of fabric against blunt trauma. It is possible that impacts into ballistic packages composed of different fabrics with the same depth of depression may cause completely dissimilar injuries because of the amount of energy transferred to the backing material.  相似文献   

3.
This paper presents a material model suitable for simulating the behavior of dry fabrics subjected to ballistic impact. The developed material model is implemented in a commercial explicit finite element (FE) software LS-DYNA through a user defined material subroutine (UMAT). The constitutive model is developed using data from uniaxial quasi-static and high strain rate tension tests, picture frame tests and friction tests. Different finite element modeling schemes using shell finite elements are used to study efficiency and accuracy issues. First, single FE layer (SL) and multiple FE layers (ML) were used to simulate the ballistic tests conducted at NASA Glenn Research Center (NASA-GRC). Second, in the multiple layer configuration, a new modeling approach called Spiral Modeling Scheme (SMS) was tried and compared to the existing Concentric Modeling Scheme (CMS). Regression analyses were used to fill missing experimental data – the shear properties of the fabric, damping coefficient and the parameters used in Cowper-Symonds (CS) model which account for strain rate effect on material properties, in order to achieve close match between FE simulations and experimental data. The difference in absorbed energy by the fabric after impact, displacement of fabric near point of impact, and extent of damage were used as metrics for evaluating the material model. In addition, the ballistic limits of the multi-layer fabrics for various configurations were also determined.  相似文献   

4.
Attachment mode performance of network-modeled ballistic fabric shielding   总被引:2,自引:0,他引:2  
A central issue in the use of ballistic fabric shielding is the mode of attachment to the structure that it is intended to protect. In order to investigate this issue, a discrete multi-scale yarn-network model is developed for structural fabric undergoing ballistic impact, based on work found in Zohdi and Powell [Zohdi TI, Powell D. Multiscale construction and large-scale simulation of structural fabric undergoing ballistic impact. Comput Meth Appl Mech Eng 2006;195:94–109] and Zohdi [Zohdi TI. Modeling/simulation of progressive penetration of multilayered ballistic fabric shielding. Comput Mech 2002;29:61–7]. The model is comprised of a network of yarn with stochastic properties determined by smaller-scale fibrils, which are randomly misaligned. The effects of stochasticity on the overall response are explored, and the model is compared against macro-scale experiments. The key feature of the model is the fact that it does not depend on phenomenological parameters, and can be calibrated by simply measuring the properties of an individual, smallest-scale, fibril. The properties of a fibril are easily ascertained from a simple tension test. The response of the overall fabric model and ballistic experiments are in excellent agreement. The model indicates that fabric which is attached by being pinned at the corners generally absorbs more energy, relative to fabric clamped along the sides. The basis for this result is discussed at length in the body of this work. Furthermore, it is observed that a uniform-yarn model, one which ignores the stochastic nature of the yarn, over-estimates the amount of energy absorbed.  相似文献   

5.
This paper presents a detailed finite element (FE) analysis aiming to investigate numerically the impact deformation of multi-ply fabric panels with angled plies. The purpose of the investigation described in this paper is to study numerically the way in which the multi-ply panels deform and to identify the energy absorption in different panel constructions. The FE model was created using ABAQUS to simulate the transverse impact of a projectile onto various woven fabric panels. Influencing factors such as the impact velocity, panel construction and the number of plies are taken into account in the FE simulations. The numerical predictions show that the orientation of plies significantly affects the energy-absorbing capacity of the multi-ply fabric panels. The angled panels always increase the energy-absorbing capacity, compared with the aligned panel, by as much as 20%, depending on the number of plies in the panel. In addition, the stacking sequence of oriented plies also plays an important role in absorbing the energy. For the multi-ply fabric panel with large numbers of plies, there is an optimised sequence of plies which can maximise the energy-absorbing capacity of the panel. An important aspect of the work is validation of the numerical technique. It is shown that the FE predictions are highly consistent with the experimental study [1].  相似文献   

6.
The impact of three different projectiles (0.357 Magnum, 9-mm FMJ and 0.30 cal FSP) onto Kevlar® was modeled using a commercial finite-element program. The focus of the research was on simulating full-scale body armor targets, which were modeled at the yarn level, by reducing to a minimum the number of solid elements per yarn. A thorough validation of the impact physics was performed at the yarn level, single-layer level, and a full body armor system. A verification was performed by checking the numerical model against analytical predictions for yarn impact. For one-layer and multiple-layer targets validation consisted on matching experimental data of pyramid formation recorded by an ultra-high-speed camera. The full-scale targets were also instrumented with nickel–chromium wires that stretch with the yarn during the penetration event. The wires provided a second validation data set since the numerical model can reproduce the signal recorded by the wires. The third and final validation of the model is provided by a comparison of the ballistic limit predicted by the model and data obtained in tests. This is a check of the failure model used in the numerical simulations. This paper shows that the main features of the impact physics are well reproduced by the finite-element model. Prediction of ballistic limits for the 9-mm FMJ and FSP projectiles were within the scatter of the tests, while for the 0.357 projectile the difference was only 15%.  相似文献   

7.
A multi-scale approach to modelling is optimal for computationally intensive problems of a hierarchical nature such as 3D woven composites. In this paper an approach capable of modelling feature/component scale fabric deformations and defects is proposed. The proposed technique starts with a meso-scale model for predicting the as-woven geometry of a single unit cell using a high fidelity digital element method. The unit cell geometry is then converted into a macro-scale fabric model by geometric reduction then tessellation. On the macro-scale, two and three dimensional approaches to yarn geometry representation are proposed, with an accompanying yarn mechanical model. Each approach is evaluated based on solution accuracy and computational efficiency. The proposed approach is then verified against experimental results on the meso- and macro-scales. The applicability of this modelling technique to larger scale compaction problems is then investigated. The proposed algorithm was found to be accurate and computationally efficient.  相似文献   

8.
A genetic algorithm is coupled with a finite element model to optimise the arrangement of constraints for a composite press-forming study. A series of springs are used to locally apply in-plane tension through clamps to the fibre preform to control material draw-in. The optimisation procedure seeks to minimise local in-plane shear angles by determining the optimum location and size of constraining clamps, and the stiffness of connected springs. Results are presented for a double-dome geometry, which are validated against data from the literature. Controlling material draw-in using in-plane constraints around the blank perimeter is an effective way of homogenising the global shear angle distribution and minimising the maximum value. The peak shear angle in the double-dome example was successfully reduced from 48.2° to 37.2° following a two-stage optimisation process.  相似文献   

9.
The impact behavior of warp-knitted spacer fabrics (WKSFs) impregnated with shear thickening fluid (STF) under low-velocity impact loadings have been investigated from experimental and finite element analyses (FEA) approaches. From the experimental approach, the impact load–displacement curves have been obtained. It was observed that the WKSF impregnated with the STF composite material (the WKSF/STF composite) shows a higher stiffness and lower peak force than those of the WKSF under the same impact loadings. In FEA approach, the geometrical models of the WKSF and the WKSF/STF composite material were established based on the WKSF fabric architectures. The dynamic responses including the impact load–displacement curves and impact deformation of the samples were predicted based on finite element analyses at the microstructure level. It was found that the STF and the coupling effect between the STF fluid and fiber tows are the key factors which influence the cushioning behaviors of the composite. The energy absorption mechanisms include the buckling of the spacer finer tows and the thickening effect of the STF under impact loading. The WKSF/STF composite could be expected as a damping or energy-absorptive materials under impact loading.  相似文献   

10.
Kadir Bilisik 《Composites Part A》2011,42(12):1930-1942
The aim of this study is to analyze and determine the pull-out properties of para-aramid woven fabrics. Para-aramid Kevlar29® and Kevlar129® woven fabrics were used to conduct the pull-out tests. They have high and low fabric densities. A yarn pull-out fixture was developed to test various fabric sample dimensions. Data generated from single and multiple yarn pull-out tests in various dimensions of Kevlar29® and Kevlar129® woven fabrics included fabric pull-out forces, yarn crimp extensions in the fabrics and fabric displacements. The regression model showed that yarn pull-out forces depend on fabric density, fabric sample dimensions and the number of pulled ends in the fabric. Yarn crimp extensions depend on the crimp ratios of the fabric and fabric density. Fabric displacements depend on fabric sample dimensions and the number of pulled yarns.  相似文献   

11.
A finite element made of woven unit cells under biaxial tension and in-plane shear is proposed for the simulation of fabric forming. The simulation is made within an explicit dynamic approach and is based on a simplified dynamic equation accounting for tension and in-plane shear strain energy. The biaxial tensile properties (given by two surfaces) and the in-plane shear properties (given by a curve) can be determined both by biaxial tensile tests and picture frame experiments or obtained by mesoscopic 3D finite element analyses of the woven unit cell. The interior load components of the proposed finite element are calculated explicitly and simply from the tensions and shear torque on four woven cells. The results obtained by the simulations of a hemispherical forming process on a very unbalanced fabric are compared to experiments. It is shown that the tension strain energy permits to describe the asymmetry of the response but that the computation of wrinkles and of the deformed states when the locking angle is exceeded needs to take the in-plane shear stiffness and its evolution with shear angle into account.  相似文献   

12.
Micromechanical finite element modeling has been employed to define the failure behavior of S2 glass/BMI textile composite materials under impact loading. Dynamic explicit analysis of a representative volume element (RVE) has been performed to explore dynamic behavior and failure modes including strain rate effects, damage localization, and impedance mismatch effects. For accurate reflection of strain rate effects, differences between an applied nominal strain rate across a representative volume element (RVE) and the true realized local strain rates in regions of failure are investigated. To this end, contour plots of strain rate, as well as classical stress contours, are developed during progressive failure. Using a previously developed cohesive element failure model, interfacial failure between tow and matrix phases is considered, as well as classical failure modes such as fiber breakage and matrix microcracking. In-plane compressive and tensile loading have been investigated, including multi-axial loading cases. Highly refined meshes have been employed to ensure convergence and accuracy in such load cases which exhibit large stress gradients across the textile RVE. The effect of strain rate and phase interfacial strength have been included to develop macro-level material failure envelopes for a 2D plain weave and 3D orthogonal microgeometry.  相似文献   

13.
The weave architecture is vital for hot compaction and the mechanical properties of self-reinforced polypropylene. Low compaction quality resulted in early damage initiation and reduced tensile strength. Interleaved films and decreased crimp in the weave architecture increased the compaction quality. The best compaction quality and tensile properties were obtained by standard fed weaves with interleaved films. The penetration impact resistance and peel strength was independent of the weave architecture. Interleaved films increased the peel strength drastically, but the impact resistance only slightly decreased. These conclusions help to select the correct weave architecture and facilitate the hot compaction process.  相似文献   

14.
A two-step methodology is proposed in order to estimate from numerical simulations the permeability of deformed woven fabrics. Firstly, the shear deformation of a glass plain weave until the shear locking is studied from a mesoscale analysis achieved with a representative volume element (RVE) of the periodic plain weave. Simulations have been carried out within the scope of large transformations, accounting for yarn–yarn contacts, and assuming that yarns behave as hypoelastic materials with transverse isotropy. From the simulated deformed solid RVE, a complementary periodic fluid RVE is then built and the slow flow of an incompressible Newtonian fluid within it is investigated. This allows to compute, in a second step, the permeability of the deformed plain weave. The role of the shear deformation on the permeability of multi-layers or single layer preforms is discussed.  相似文献   

15.
A predictive approach to modelling the forming of viscous textile composites has been implemented in two finite element codes; Abaqus Standard™ and Abaqus Explicit™. A multi-scale energy model is used to predict the shear force–shear angle–shear rate behaviour of viscous textile composites, at specified temperatures, using parameters supplied readily by material manufacturers, such as fibre volume fraction, weave architecture and matrix rheology. The predictions of the energy model are fed into finite element simulations to provide the in-plane shear properties of two different macro-scale constitutive models implemented in the finite element codes. The manner of coupling predictions of the multi-scale energy model with the macro-scale models is shown to affect the rate-dependent material response in the simulations. These coupling methods are evaluated using picture frame test simulations.  相似文献   

16.
Hyperelastic modelling for mesoscopic analyses of composite reinforcements   总被引:2,自引:0,他引:2  
A hyperelastic constitutive law is proposed to describe the mechanical behaviour of fibre bundles of woven composite reinforcements. The objective of this model is to compute the 3D geometry of the deformed woven unit cell. This geometry is important for permeability calculations and for the mechanical behaviour of the composite into service. The finite element models of a woven unit cell can also be used as virtual mechanical tests. The highlight of four deformation modes of the fibre bundle leads to definition of a strain energy potential from four specific invariants. The parameters of the hyperelastic constitutive law are identified in the case of a glass plain weave reinforcement thanks to uniaxial and equibiaxial tensile tests on the fibre bundle and on the whole reinforcement. This constitutive law is then validated in comparison to biaxial tension and in-plane shear tests.  相似文献   

17.
A hyperelastic constitutive law is proposed to describe the mechanical behaviour of 3D layer to layer angle interlock composite reinforcements. The objective of this model is to simulate shaping of thick textile preforms for RTM processes. After the identification of the independent deformation modes of initially orthotropic reinforcements, a strain energy potential is built up based on strain invariants representative to those modes assuming an additive composition of them. The parameters of the proposed constitutive model are identified using standard and specific mechanical tests performed on a 3D interlock material. Then, the model is validated on forming simulations on a single curve and double curve shapes. Three point bending tests on thick interlock reinforcements have been analysed experimentally and numerically. The specific transformation of cross sections is depicted by the proposed hyperelastic model.  相似文献   

18.
Late-stage fatigue damage of an E-glass/epoxy 3D orthogonal non-crimp textile composite loaded in the warp direction has been investigated using a combination of mechanical testing, X-ray micro computed tomography (μCT), optical microscopy and finite element modelling. Stiffness reduction and energy dissipated per cycle were found to be complementary measurements of damage accumulation, occurring in three stages: a first stage characterised by rapid changes, a more quiescent second stage, followed by a third stage where the (decreasing) stiffness and (increasing) energy dissipation change irregularly and then rapidly, to failure. Microscopy of specimens cycled into the transition between the second and third stages showed macroscopic accumulations of fibre fractures in sections of warp tows which lying adjacent to the surface weft tows which are crowned-over by the Z-tows. At these locations, the warp tow fibres are subjected to stress concentrations both from transverse weft tow matrix cracks and resin pocket cracks.  相似文献   

19.
Hybrid glass–carbon 2D braided composites with varying carbon contents are impacted using a gas gun by impactors of masses 12.5 and 44.5 g, at impact energies up to 50 J. The damage area detected by ultrasound C-scan is found to increase roughly linearly with impact energy, and is larger for the lighter impactor at the same impact energy. The area of whitening of the glass tows on the distal side corresponds with the measured C-scan damage area. X-ray imaging shows more intense damage, at the same impact energy, for a higher-mass impactor. Braids with more glass content have a modest increase in density, decrease in modulus, and reduction in the C-scan area and dent depth at the impact site, particularly at the higher impact energies. Impact damage is found to reduce significantly the compressive strength, giving up to a 26% reduction at the maximum impact energy.  相似文献   

20.
Post ballistic impact residual yarn mechanical properties were analyzed from two different as-received shoot packs composed solely of AuTx yarn possessing the 2/2 twill weave structure, one being impacted by 9-mm projectiles and the other by 2-grain projectiles. It was found that yarn mechanical properties from both shoot packs yielded similar results, regardless of yarn orientation, ply location, or penetrator size, which indicates that ballistic damage in the packets is very localized, producing little damage to the neighboring yarns. Mechanical properties of these woven, ballistically impacted, and then extracted yarns were compared to as-received native spooled AuTx yarn yielding a slight reduction in tensile strength, an increase in failure strain, and a reduction in elastic modulus, thereby yielding little variation in yarn toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号