首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanocomposites of polyacrylonitrile (PAN) with reduced graphene oxide (rGO) were prepared using a solution mixing technique employing polyvinyl phenol (PVP) as a compatibilizer. The PVP can facilitate composite formation by interacting with both rGO and PAN via π-π and H-bonding respectively. Various amounts of rGO were used to prepare PAN nanocomposites. The cross-sectional morphology of the composite films shows a uniform dispersion of rGO sheets in the PAN matrix. The Fourier transform infrared (FT-IR) studies revealed that good interaction of the rGO/PVP hybrid with PAN. The wide angle x-ray diffraction (WAXS) study confirms that the rGO sheets were uniformely dispersed as individual sheets in the PAN matrix. Thermogravimetric analysis shows enhanced thermal stability of the composite compared to pure PAN. The tensile strength and elastic modulus of the nanocomposites increased with increasing rGO content. A 102% enhancement in tensile strength and a 62.9% enhancement in elastic modulus were observed in the nanocomposite with 5% rGO.  相似文献   

2.
Integration of organic nanoclay into bio-based polyurethane (PU) foam is a promising alternative to enhance the foam’s properties via green technology. In this paper, modified diaminopropane montmorillonite (DAP-MMT) nanoclay was introduced into palm oil-based PU foam at different weight loadings, namely, 0, 2, 4, 6, 8, and 10 wt.%, in order to investigate the effects on the mechanical and thermal properties of the foam. Several tests and characterizations were carried out to study the surface morphology, density, compressive strength and thermal stability of the foam. It was found that foam exhibited an exfoliated or intercalated microstructure based on the DAP-MMT contents. The X-ray diffraction analysis showed that below 4 wt.%, the foams displayed exfoliated structures while beyond the value, the foams exhibited the intercalated morphologies. Closed cells with different cell sizes were observed when the DAP-MMT contents were varied. Meanwhile, thermal stability and compressive strength of foams increased with increasing DAP-MMT contents up to 4 wt.%, as shown by thermogravimetry analysis and compression test, respectively.  相似文献   

3.
ZnO nanoparticles were prepared using zinc chloride and sodium hydroxide in chitosan medium. Prepared ZnO (NZO) and commercial ZnO (CZO) was characterized by scanning electron microscopic and X-ray diffraction studies. PP/ZnO nanocomposites were prepared using 0–5 wt% of zinc oxide by melt mixing. It was then compression moulded into films. Transparency of the composite films were improved by reducing the crystallite size of ZnO. Melt flow index studies revealed that NZO increased the flow characteristics of PP while CZO decreased. X-ray diffraction studies indicated α-form of isotactic polypropylene. An increase in mechanical properties, dynamic mechanical properties and thermal stability of the composites were observed by the addition of ZnO. Uniform dispersion of the ZnO was observed in the scanning electron micrographs of the tensile fractured surface of composites.  相似文献   

4.
Cellulose nanofibers–reinforced PVA biocomposites were prepared from peanut shell by chemical–mechanical treatments and impregnation method. The composite films were optically transparent and flexible, showed high mechanical and thermal properties. FE-SEM images showed that the isolated fibrous fragments had highly uniform diameters in the range of 15–50 nm and formed fine network structure, which is a guarantee of the transparency of biocomposites. Compared to that of pure PVA resin, the modulus and tensile strength of prepared nanocomposites increased from 0.6 GPa to 6.0 GPa and from 31 MPa to 125 MPa respectively with the fiber content as high as 80 wt%, while the light transmission of the composite only decreased 7% at a 600 nm wavelength. Furthermore, the composites exhibited excellent thermal properties with CTE as low as 19.1 ppm/K. These favorable properties indicated the high reinforcing efficiency of the cellulose nanofibers isolated from peanut shell in PVA composites.  相似文献   

5.
The addition of nanoparticles has been reported as an option to increase the fracture toughness of thermosetting polymers without compromising the stiffness. In this paper, alumina or carbon nanotubes (CNTs), in three different concentrations, were dispersed in an epoxy resin. Mechanical properties were measured through tensile test and the results indicate increases for all nanocomposites, with a maximum for the addition of 0.5% of CNTs (17% in elastic modulus and 22% in ultimate stress). Using TEM images, it was possible to identify the nanostructures and mechanisms that lead to improved stiffness. Fracture toughness tests and SEM images showed that cavitation – shear yielding (for epoxy/alumina nanocomposites) and crack bridging – pull-out (for epoxy/CNTs nanocomposites) are the predominant mechanisms.  相似文献   

6.
Polylactide reinforced with 3 wt% of organo-modified montmorillonite, 5 wt% of stearic acid-modified calcium carbonate nanoparticles, 15 wt% of cellulose fibers (PLA/MMT, PLA/NCC, PLA/CF) and hybrid composites containing 15 wt% of fibers in addition to montmorillonite (PLA/MMT/CF) or calcium carbonate (PLA/NCC/CF) were prepared and examined. The nanoparticles were dispersed in polylactide almost homogeneously; montmorillonite was exfoliated during processing. Tg of polylactide remained unaffected but its cold crystallization was enhanced; the cold-crystallization behavior of the hybrid composites was dominated by nanofillers nucleating ability. The fibers and calcium carbonate decreased whereas exfoliated montmorillonite improved the thermal stability of the materials. Polylactide, PLA/NCC and PLA/MMT exhibited ability to plastic deformation, although the latter the weakest. Tensile behavior of the hybrid composites was strongly influenced by the fibers and similar to that of PLA/CF. All the fillers increased the storage modulus below Tg; that of PLA/MMT/CF and PLA/NCC/CF was improved with respect to polylactide by 50% and 45%, respectively.  相似文献   

7.
The aim of this study was to evaluate the effect of the addition of two types of nanoparticles, organomodified montmorillonite Cloisite® 30B (C-30B), and a tubular like clay, halloysite (HNT), on the morphology and thermal and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) – PHBV nanocomposites. TEM and WAXD results showed a combination of a few tactoids and a partially exfoliated structure for PHBV/C-30B nanocomposites and a good dispersion of HNT in the PHBV matrix. DSC analysis indicated a lower nucleation density with the addition of nanoparticles. Furthermore, the presence of C-30B led to the formation of double melting peaks, related to different crystalline phases. However, a higher melting temperature was obtained for PHBV/HNT nanocomposites. A general increase in the Young’s modulus was observed. However, for PHBV/C-30B nanocomposites, this enhancement was at the expense of the strain at break and impact strength, probably due to the degradation of the polymer during processing.  相似文献   

8.
9.
A reduced graphene oxide (RGO)-NiFe2O4 nanocomposite was synthesized by a simple one step hydrothermal approach and its application in the electrocatalytic oxidation of hydrazine was demonstrated. The as-synthesized nanocomposite was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV–visible spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Thermogravimetric analysis, Field emission-scanning electron microscopy (FE-SEM), and Transmission electron microscopy (TEM). The FE-SEM and TEM image analyses revealed that the NiFe2O4 nanoparticles were uniformly distributed on the RGO sheets with a diameter and length of ∼10 and ∼100 nm, respectively. The XPS analysis confirmed the ionic states of Ni and Fe to be Ni3+ and Ni2+, and Fe2+ and Fe3+, respectively. Further, the electrochemical activity of the RGO-NiFe2O4 nanocomposite was investigated by studying the oxidation of hydrazine. The RGO-NiFe2O4 modified glassy carbon electrode (GCE) showed an outstanding electrocatalytic activity towards the oxidation of hydrazine as compared to the NiFe2O4 and RGO modified electrodes. The enhanced electrocatalytic activity is due to the synergistic effect between RGO and NiFe2O4. Using amperometry, the lowest detection limit of 200 nM was achieved with the RGO-NiFe2O4 modified GCE. Therefore, the RGO-NiFe2O4 modified GCE can be used for the electrochemical oxidation of hydrazine.  相似文献   

10.
Xenograft bone has been widely used as a bone grafting material because it gains advantages in biological and mechanical properties as compare with the use of an allograft bone. Heat-treatment of bone is recognized as one of the simple and practical methods to lower the human immunodeficiency virus (HIV) infection and overcome the risks of rejection and disease transfer during the bone transplantation. Therefore, understanding the change of bone’s organic matrix after heat treatment has become a significant topic. In this study, thermal gravimetric analysis (TGA) was used to investigate the condition of organic constituents of a bovine cortical bone. In order to well characterize the microstructural and mechanical property of the bone after heat treatment, nanoindention technique was also employed to measure the localized elastic modulus (E) and hardness (H) of its interstitial lamellae and osteons lamellae at the temperatures of 23 °C (RT), 37 °C, 90 °C, 120 °C and 160 °C, respectively.The TGA results demonstrated that heat-treated bones had three stages of weight loss. The first stage was the loss of water, which started from RT to 160 °C. Follow by a weight loss of organic constituents starting from 200 °C to 600 °C. Upon reaching 600 °C, the organic constituents were decomposed and mineral phase loss started taking place until 850 °C. From the nanoindentation results, it showed the values of E and H measured for the interstitial lamellae were higher than that of the osteons lamellae. This phenomenon indicates that the interstitial lamellae are stiffer and easy to be mineralized than osteons lamellae. For a specimen heat-treated at 90 °C, the values of E and H of interstitial lamellae and osteons lamellae were similar to a non-heat-treated specimen. For a specimen heat-treated at 120 °C, its interstitial lamellae had higher E and H values than osteons lamellae. When a specimen was heat-treated at 160 °C, both interstitial lamellae and osteons lamellae demonstrated a slight decrease of their E and H values. An ANOVA statistical analysis was used to analyze the difference in elastic properties and hardness in various temperature ranges.  相似文献   

11.
Numerous carbon nanostructures have been investigated in the last years due to their excellent mechanical properties. In this work, the effect of the addition of graphene oxide (GO) nanoparticles to UHMWPE and the optimal %wt GO addition were investigated. UHMWPE/GO nanocomposites with different GO wt% contents were prepared and their mechanical, thermal, structural and wettability properties were investigated and compared with virgin UHMWPE. The results showed that the thermal stability, oxidative resistance, mechanical properties and wettability properties of UHMWPE were enhanced due to the addition of GO. UHMWPE/GO materials prepared with up to 0.5 wt% GO exhibited improved characteristics compared to virgin UHMWPE and nanocomposites prepared with higher GO contents.  相似文献   

12.
The aim of this study was to produce biodegradable polylactic acid/cellulose whisker nanocomposites by compounding extrusion and investigate the possibility to use polyvinyl alcohol to improve the dispersion of whiskers in the matrix. Two feeding methods of polyvinyl alcohol and cellulose nanowhiskers were used and evaluated, dry-mixing with polylactic acid prior extrusion or pumping as suspension directly into the extruder. Various microscopic techniques, tensile testing, and dynamic mechanical thermal analysis were used to study the structure and properties of the nanocomposites. Due to immiscibility of the polymers, phase separation occurred with a continuous polylactic acid phase and a discontinuous polyvinyl alcohol phase. The whiskers were primarily located in the polyvinyl alcohol phase and only a negligible amount was located in the polylactic acid phase. This inadequate dispersion of whiskers in the polylactic acid phase was probably the reason why no improvements in thermal properties were seen for the nanocomposites. The relative small improvements in tensile modulus, tensile strength, and elongation to break for the nanocomposites also indicated that it was principally the polyvinyl alcohol phase that was reinforced with whiskers but not the polylactic acid phase.  相似文献   

13.
Graphene nanoplatelet (GNP) was incorporated into poly(vinylidene fluoride) (PVDF) and PVDF/poly(methyl methacrylate) (PMMA) blend to achieve binary and ternary nanocomposites. GNP was more randomly dispersed in binary composites compared with ternary composites. GNP exhibited higher nucleation efficiency for PVDF crystallization in ternary composites than in binary composites. GNP addition induced PVDF crystals with higher stability; however, PMMA imparted opposite effect. The binary composite exhibited lower thermal expansion value than PVDF; the value further declined (up to 28.5% drop) in the ternary composites. The storage modulus of binary and ternary composites increased to 23.1% and 53.9% (at 25 °C), respectively, compared with PVDF. Electrical percolation threshold between 1 phr and 2 phr GNP loading was identified for the two composite systems; the ternary composites exhibited lower electrical resistivity at identical GNP loadings. Rheological data confirmed that the formation of GNP (pseudo)network structure was assisted in the ternary system.  相似文献   

14.
Exfoliated graphite nanoplates (xGnPs)/polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene (SEBS) nanocomposites have been prepared by the simple melt-compounding approach. The structural, mechanical and viscoelastic properties of these composites were studied and compared. Wide-angle X-ray diffraction (WAXD) studies indicated that the processing of nanocomposites did not change the original d-spacing of xGnPs. Scanning electron microscopy observation on the fracture surfaces of the composites shows a uniform dispersion of xGnPs throughout SEBS matrix and strong interfacial adhesion between oxidized xGnPs and the matrix, which are responsible for the considerable enhancement of mechanical properties of the composites. It is found that the addition of xGnPs particles improved both the elastic modulus and storage modulus of pure SEBS significantly and the higher the xGnPs content, the higher the modulus of the nanocomposite. Moreover, the effects of dispersed xGnPs on the microphase separation of SEBS have also been investigated using small angle X-ray scattering (SAXS).  相似文献   

15.
Isotactic polypropylene (PP) nanocomposites with multi-walled carbon nanotubes (MWCNTs) of various diameters (10–50 nm) were fabricated by extrusion and compression-molding techniques and characterized by X-ray diffraction measurements, differential scanning calorimetry, scanning electron microscopy, mechanical test and differential thermal analyses. The pure PP exhibits both the a- and b-axes oriented α-crystal, whereas the MWCNTs induce the b-axis orientation of the α-crystal along with the formation of minor γ-phase crystal in nanocomposites. Crystallinity, long period of lamellae, tensile strength, tensile modulus (TM) and microhardness (H) of PP considerably change by different loading and sizes of MWCNTs. The estimated values H/TM = 0.09–0.10 for all samples approach the predicted value of 0.10 for polymers. The increase in crystallinity has been demonstrated by both XRD and DSC studies. Mathematical models have been invoked to explain the changes in mechanical properties. An increase in thermal stability of polymer matrix occurs with increasing MWCNTs size and loading.  相似文献   

16.
Fracture toughness and other mechanical properties of epoxy are known to be affected by the addition of nanoclays. Fracture toughness has been shown by many researchers to depend on the nanocomposite structure with well-dispersed and distributed nanoparticles resulting in improvements in this property by up to 50%. Notch fracture toughness depends on the acuity of the notch as well as on the structure of the nanocomposite. In the present work, a two-parameter fracture criterion based on a critical notch stress intensity factor, Kρ,c, and effective T-stress, Tef, was used to study the effect of notch severity and nanoclay addition on the fracture toughness of the epoxy matrix. The results show that the average value of Kρ,c for neat epoxy increased with increasing notch radius while the absolute value of Tef decreased with notch radius. The addition of nanoclay to pristine epoxy reduced the average value of Kρ,c and increased the absolute value of Tef. The critical notch radius was found to be around 1.0 mm and the notch sensitivity was higher for neat epoxy. SEM analysis of the fractured surfaces revealed that the lower Kρ,c for nanocomposites in both mode I and mixed mode fractures was due to early crack initiation at clay clusters or voids at the notch root.  相似文献   

17.
This work demonstrates the potential of aligned electrospun fibers as the sole reinforcement in nanocomposite materials. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A proprietary electrospinning technology for production of uniaxially aligned electrospun fiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. The results demonstrate that using aligned electrospun fibers significantly enhances material properties compared to unreinforced resin, especially when manufactured using the hybrid electrospinning–electrospraying method. For example, tensile strength of such a material containing only 0.13 vol% of fiber was increased by ∼700%, and Young’s modulus by ∼250%, with concomitant increase in ductility.  相似文献   

18.
The addition of fibres to a brittle matrix is a well-known method to improve the flexural strength. However, the success of the reinforcements is dependent on the interaction between the fibre and the matrix. This paper presents the mechanical and microstructural properties of PVA and basalt fibre reinforced geopolymers. Moreover low density and thermal resistant materials used as insulating panels are known be susceptible to damage due to their poor flexural strength. As such the thermal and fire resistance properties of foamed geopolymers containing fibre reinforcement were also investigated.The results highlight that the presence of PVA fibres greatly increased the flexural strength and the toughness of the geopolymer composite, while the presence of basalt fibres improved the flexural behaviour of the composite after high temperature exposure.  相似文献   

19.
The effect of hexamethylene disilazane modified nanosilica on the dynamic mechanical analysis (DMA), crystallization, melting and thermal degradation behavior of linear low density polyethylene/ethylene vinyl acetate copolymer (LLDPE/EVA) blends are explored.Detailed DMA analysis is carried out in order to investigate the reinforcing behavior of nanosilica adopting Kerner–Nielson model. Oxidative degradation and thermal stabilities of samples are also studied by the thermogravimetery analysis. The high content of nanosilica particles results in significant shift of degradation temperature to higher temperatures in the oxygen atmosphere. This behavior might be attributed to the barrier properties of nanoparticles against oxygen and gaseous degradation products. However, incorporation of modified nanosilica into LLDPE/EVA blend is decreased the onset of degradation temperature of the unfilled system. In nitrogen atmosphere, no changes are observed in the thermal degradation range and only a reduction is documented in the onset of degradation temperature. Considering important role of onset of degradation temperature, activation energy of starting of degradation temperature is calculated utilizing Kissinger-Ozawa model in both oxygen and nitrogen atmospheres. Results showed that activation energy of degradation reaction is decreased by ∼ 20 kJ/mol. This decrease is owing to the release of modifiers from the nanoparticles.  相似文献   

20.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号