首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composites made with natural fibers are finding applications in a wide variety of engineering fields due to their low cost and eco-friendly nature. This paper deals with the fabrication and evaluation of hybrid natural fiber composite using jute and abaca fibers along with glass fibers. Each composite is made up of five layers with three layers of jute and abaca enclosed by two layers of glass fibers. The composites are manufactured with three different fiber orientations and the compositions are varied in three different proportions. The fabricated composite samples are tested to investigate their various mechanical properties. From the test results, it is observed that fiber orientation plays a vital role in determining the mechanical properties of the composite. Morphological analysis is done using Scanning Electron Microscope (SEM).  相似文献   

2.
The present work focuses on studying the multi-scale deformation and failure mechanisms of an orthogonally woven glass fiber reinforced composite as a function of fiber orientation angle using digital image correlation. The full-field displacement and strain localization are effectively captured at meso-scale. At continuum scale, a remarkable change in mechanical response is observed when the loading axis diverges from principal axes. The variation in the global mechanical response is observed to be most prominent in the change of stiffness and strain at failure. At meso scale, a high degree of local deformation heterogeneity is observed and the level of inhomogeneity is found to be more prominent in case of the 45° off-axis specimens. While fiber-pull out is the major failure mode in the case of specimen loaded parallel to 0° and 90° fiber orientation, the localized shear strain developed in polymer-rich regions is the driving failure cause in the case of 45° off-axis specimen.  相似文献   

3.
《Composites Part A》2002,33(1):43-52
Short bamboo fiber reinforced polypropylene composites (BFRP) and short bamboo–glass fiber reinforced polypropylene hybrid composites (BGRP) were fabricated using a compression molding method. Maleic anhydride polypropylene (MAPP) was used as a compatibilizer to improve the adhesion between the reinforcements and the matrix material. By incorporating up to 20% (by mass) glass fiber, the tensile and flexural modulus of BGRP were increased by 12.5 and 10%, respectively; and the tensile and flexural strength were increased by 7 and 25%, respectively, compared to those of BFRP. Sorption behavior and effects of environmental aging on tensile properties of both BFRP and BGRP systems were studied by immersing samples in water for up to 1200 h at 25°C. Compared to BFRP, a 4% drop in saturated moisture level is seen in BGRP. After aging in water for 1200 h, reduction in tensile strength and modulus for BGRP is nearly two times less than that of BFRP. Use of MAPP as coupling agent in the polypropylene matrix results in decreased saturated moisture absorption level and enhanced mechanical properties for both BFRP and BGRP systems. Thus it is shown that the durability of bamboo fiber reinforced polypropylene can be enhanced by hybridization with small amount of glass fibers.  相似文献   

4.
The effect of colloidal silica on the hydration reaction of the Portland cement system and its effect on the resulting mechanical properties are not completely understood. Silica nanoparticles can affect the behavior and performance of fiber–cement, such as the calcium–silicate–hydrate gel of the matrix and the fiber–matrix interface bonding. The main objective of this study is to evaluate the effects of various contents of colloidal silica (0, 1.5, 3, 5, and 10 % w/w) on the microstructure and mechanical performance of cement composites reinforced with cellulosic pulp. Fiber–cement composites with unbleached eucalyptus Kraft pulp as the micro-fiber reinforcement were produced by the slurry dewatering technique followed by pressing. The average values of the modulus of rupture of the fiber–cement decreased with increasing colloidal silica content. However, the pullout of the fibers increased significantly in the fiber–cement composites with additions between 3 and 10 % w/w of colloidal silica suspension, as indicated in the scanning electron microscopy images and by the improvement in the energy of fracture values.  相似文献   

5.

PTFE/GF(glass fiber) composites are widely applied in high-frequency printed circuit board (PCB) substrate materials due to the excellent dielectric properties of PTFE and the low thermal expansion coefficient of GF. However, the poor interface compatibility between PTFE and GF affects the performance of the composite substrates. In this study, tetraethyl orthosilicate (TEOS) was used as the silicon source, and polydimethylsiloxane (PDMS) was the organic precursor to modify the surface of GF through the sol–gel method to promote the interface compatibility of GF and PTFE. The modified GF noted T-GF was filled in PTFE to prepare PTFE/T-GF composites. SEM, FTIR, XPS, and contact angle confirmed that organic–inorganic hybrids were successfully loaded on GF's surface. Moreover, compared with PTFE/GF and the conventional coupling agent modified GF filled PTFE composites, the PTFE/T-GF exhibited improved dielectric constant (2.305), decreased dielectric loss (9.08E?4), higher bending strength (21.45 MPa) and bending modulus (522 MPa), better thermal conductivity (0.268 W/m*K) and lower CTE (70 ppm/°C), making it has promising application as the substrate materials for high frequency PCB.

  相似文献   

6.
The paper evaluates effect of fibre surface modification and hybridization on dynamic mechanical properties of Roystonea regia/epoxy composites. Surface modification involved alkali and silane treatments. Alkali treatment proved to be more effective on dynamic mechanical properties as compared to silane treatment. Storage and loss modulus values increased after treatments with simultaneous decrease in tan δ values. Roystonea regia and glass fibres were used together with varying proportions as reinforcement in epoxy matrix to study the hybridization effect on dynamic mechanical properties. Storage and loss modulus values increased with increase in glass fibre content whereas tan δ values were found to decrease. Scanning electron microscopy of tensile fractured surfaces was carried out to study the interface adhesion of different composites.  相似文献   

7.
The crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structural integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. Finally, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).  相似文献   

8.
Fibers are used for improving some properties of conventional concrete (which is a brittle material) such as tensile strength, abrasion resistance, absorption and crack control. This study investigates the usability of fibers against the harmful effects of freeze–thaw cycles on cement mortars. For this objective, five different types of fibers, i.e., Polypropylene (PP), Carbon (CF), Aramid (AR), Glass (GF) and Poly vinyl alcohol (PVA) in four different ratios (0.0%, 0.4%, 0.8% and 1.2%) were added to cement mortars along with an amount of air agent. These samples were then subjected to five different freeze–thaw cycles (0, 25, 50, 75 and 100). Thus, mechanical behaviors were investigated under freeze–thaw effects.The most important results of the study are summarized; the fibers increase flexural strength and deflection ability of the samples while decreasing compressive strength, dynamic modulus of elasticity and specific mass. The highest flexural strength was obtained with a 1.2% addition of CF fiber for the samples in normal conditions. The mechanical properties of the samples subjected to repetitive freeze–thaw cycles were also investigated; the best flexural strength was provided with 1.2% CF addition, while the highest dynamic modulus of elasticity was obtained with a 1.2% PP addition.  相似文献   

9.
Epoxy–matrix reinforced with nanodiamond (ND) particles, with ND content up to 5 wt%, were synthesized. Characterization of NDs by field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy was conducted, while composites were characterized through contact angle, nanoindentation, nanoscratch and scanning probe microscopy. The assessed properties evaluated were hardness, elastic modulus, contact angle, deformation mechanisms, creep deformation, coefficient of friction and adhesion, namely. Results showed that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of epoxy matrix, while properties of composites present a switch in behavior after passing a concentration threshold; this threshold was identified and discussed.  相似文献   

10.
The objective of this study was to improve bending strength properties of three-layer wood–porcelain stone composite board. The focus of this study was on the effects of orientations and weight ratios of bamboo fiber in face layer on physical and mechanical properties of the board. Three types of board with different orientation of bamboo fibers in the face layer were manufactured: one in which the fibers were oriented at random orientation (R board), another in which the fibers were oriented at unidirectional orientation (U board), and a third in which the fibers were oriented at cross orientation (C board). The physical and mechanical properties of the boards were evaluated based on the Japanese Industrial Standard for Particleboards. The main results obtained were as follows: Bending strength properties of the board were strongly affected by both orientation and weight ratio of bamboo fibers. Perpendicular specimen of C board has larger bending strength properties than U board and the value become larger with increased weight ratio of bamboo fibers. Internal bond strength value decreased with increasing weight ratio of bamboo fibers. The effect of orientation and weight ratios of bamboo fiber on thickness swelling of the board was not significant.  相似文献   

11.
12.
Moisture absorption and durability in water environment are major concerns for natural fibres as reinforcement in composites. This paper presents a study on the influence of water ageing on mechanical properties and damage events of flax–fibre composites, compared with glass–fibre composites. The effects of the immersion treatment on the tensile characteristics, water absorption and acoustic emission (AE) recording were investigated. The water absorption results for the flax–fibre composites show that the evolution appears to be Fickian and the saturated weight gain is 12 times as high that the glass–fibre composites. Decreasing continuously with increasing water immersion time, the tensile modulus and the failure strain of flax–fibre composites are hardly affected by water ageing whereas only the tensile stress is reduced regarding the glass–fibre composites. AE indicate that matrix–fibres interface weakening is the main damage mechanism induced by water ageing for both composites.  相似文献   

13.
New magnesium nanocomposites reinforced with copper–graphene nanoplatelet hybrid particles have been prepared through the semipowder metallurgy method. Compared with the monolithic Mg, the Mg–1Cu–xGNPs nanocomposites exhibited higher tensile and compressive strength. In tension, nanocomposites revealed substantial enhancement in elastic modulus, 0.2% yield strength, ultimate tensile strength and failure strain (up to +89, +117, +58 and +96% respectively) compared to monolithic Mg. In compression, the nanocomposites showed the greatest improvement in 0.2% yield strength, and the ultimate compressive strength and failure strain (%) (up to +34, +59 and +61% respectively), whilst the compressive elastic modulus first increases and then decreases with an increase in the graphene nanoplatelets (GNPs) contents. The enhanced strength of the composites is likely to result from strengthening mechanisms invoked by the addition of Cu–GNPs hybrids.  相似文献   

14.
The effect of seawater immersion on impact behavior of glass–epoxy composite pipes is experimentally investigated. Glass–epoxy pipes with [±55°]3 orientation were fabricated using filament winding method. Composite pipes were selected for four different diameters as 50 mm, 75 mm, 100 mm, and 150 mm. The pipes were immersed in artificial seawater having a salinity of about 3.5% for 3, 6, 9, and 12 months in laboratory conditions. At the end of the conditioning period, the specimens were impacted at three distinct energy levels as 15 J, 20 J, and 25 J at ambient temperature of 20 °C. The comparisons between the dry and immersed cases were carried out by using contact force, deflection and absorbed energy data of the impact tests. Results show that moisture absorption, salt in seawater, diameter of specimen and residual stresses produced by manufacturing process of the composite pipe have significant effect on maximum contact force, maximum deflection, absorbed energy and failure of composite pipes according to exposure time to seawater.  相似文献   

15.
The composite materials are replacing the traditional materials, because of its superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio. The developments of new materials are on the anvil and are growing day by day. Natural fiber composites such as sisal and jute polymer composites became more attractive due to their high specific strength, lightweight and biodegradability. Mixing of natural fiber with Glass-Fiber Reinforced Polymers (GFRPs) are finding increased applications. In this study, sisal–jute–glass fiber reinforced polyester composites is developed and their mechanical properties such as tensile strength, flexural strength and impact strength are evaluated. The interfacial properties, internal cracks and internal structure of the fractured surfaces are evaluated by using Scanning Electron Microscope (SEM). The results indicated that the incorporation of sisal–jute fiber with GFRP can improve the properties and used as a alternate material for glass fiber reinforced polymer composites.  相似文献   

16.
Multiscale fillers were fabricated through synthesis of carbon nanotubes (CNTs) on silica microparticles by the use of chemical vapor deposition. Three types of catalyst precursors with different concentrations and reaction times were investigated to find the optimal conditions for CNT synthesis. The produced multiscale fillers of CNT–silica were incorporated within epoxy resin to fabricate a multiscale composite. Rheological analysis and tensile and impact tests were performed to study the effect of fillers on the structural properties of composites. The rheological results demonstrated a similar viscous behavior between CNT–silica suspensions and epoxy, which implies that there was no critical increase of viscosity. Significant improvements in the elastic modulus and tensile and impact strength were achieved for epoxy matrix filled with the optimal fraction of multiscale fillers. The reinforcing efficiency of multiscale fillers was evaluated by comparing the results of micromechanical models with experimental data.  相似文献   

17.
A hierarchical Cf/C–SiC composite was fabricated via in situ growth of carbon nanotubes (CNTs) on fiber cloths following polymer impregnation and pyrolysis process. The effects of CNTs grown in situ on mechanical properties of the composite, such as flexural strength, fracture toughness, crack propagation behavior and interfacial bonding strength, were evaluated. Fiber push-out test showed that the interfacial bonding strength between fiber and matrix was enhanced by CNTs grown in situ. The propagation of cracks into and in fiber bundles was impeded, which results in decreased crack density and a “pull-out of fiber bundle” failure mode. The flexural strength was increased while the fracture toughness was not improved significantly due to the decreased crack density and few interfacial debonding between fiber and matrix, although the local toughness can be improved by the pull-out of CNTs.  相似文献   

18.
19.
This paper presents the experimental results of six exterior beam–column joints with different concrete composites under cyclic loading. Engineered cementitious composite with polypropylene fiber and hybrid cementitious composites (HCC) using three different types of fiber namely hooked end steel fiber; brass coated steel fiber and polypropylene fiber are explored in this study. The hysteresis behavior, ductility response, energy dissipation with damping characteristics, crack patterns and damage index of all tested specimens are analyzed and compared with the cyclic response of conventional specimens. The test results indicate that HCC increases load carrying capacity and enhances energy dissipation with increased stiffness retention over conventional specimens. At higher rotation, joint specimens with HCC manifest better damage tolerance capacity over conventional specimens. This investigation implies that the use of HCC in the joint region may be an alternative solution to significantly increase the shear capacity, damage tolerance capacity and member ductility.  相似文献   

20.
Carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites were prepared by isothermal chemical vapor infiltration. The phase compositions, microstructures and mechanical properties of the composites were investigated. The results show that the multilayered matrix consists of alternate layers of PyC and β-SiC deposited on carbon fibers. The flexural strength and toughness of C/(PyC–SiC)n composites with a density of 1.43 g/cm3 are 204.4 MPa and 3028 kJ/m3 respectively, which are 63.4% and 133.3% higher than those of carbon/carbon composites with a density of 1.75 g/cm3. The enhanced mechanical properties of C/(PyC–SiC)n composites are attributed to the presence of multilayered (PyC–SiC)n matrix. Cracks deflect and propagate at both fiber/matrix and PyC–SiC interfaces resulting in a step-like fracture mode, which is conducive to fracture energy dissipation. These results demonstrate that the C/(PyC–SiC)n composite is a promising structural material with low density and high flexural strength and toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号