首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the digital image correlation (DIC) technique was used as full-field measurement to analyze the shear properties of the 3D orthogonal woven C/C composites. Both the in-plane and the through-the-thickness specimens were tested and the macroscopic average strain was obtained. The composites were composed of lots of periodic units and the macroscopic average strain was dependent on these meso-structures. There were three regions within one unit, which showed different mesoscopic strain. The relationship between the shear test region and the macroscopic average strain was systematically studied. Finally, the accuracy of conventional strain-gauge rosette measurement was also discussed.  相似文献   

2.
This paper summarizes an extensive experimental study of composites reinforced with three-dimensional woven preforms subjected to tensile, compressive and in-plane shear loading. Three innovative three-dimensional woven architectures were examined that utilize large 12 K and 24 K IM7 carbon tows, including two ply to ply angle interlock architectures and one orthogonal architecture. Additionally, a two-dimensional quasi-isotropic woven material was evaluated for comparison. Loads were applied in both the warp and the weft directions for tensile and compressive loading. Digital image correlation was used to investigate full field strains leading up to quasi-static failure. Experimental results including ultimate strengths and moduli are analyzed alongside representative failure modes. The orthogonal woven material was found to have both greater strength and modulus in tension and compression, though a ply to ply woven architecture was found to outperform the remaining three-dimensional architectures. Recommendations are made for improving the manufacturing processes of certain three-dimensional woven architectures.  相似文献   

3.
This study presents a methodology to accurately embed EFPI (Extrinsic Fabry Perot Interferometer) fibre optic sensors within the resin channels of 3D woven composite for the purpose of monitoring strain during tensile tests on a 3D woven composite. Using the same sensors the cure induced strain measurement was developed into a valid in situ cure monitoring technique for an epoxy matrix composite through correlation with rheological based cure strain data. Specific strain events were attributed to the gelation and vitrification phases of the epoxy cure cycle.  相似文献   

4.
A qualitative analysis of experimental results from small caliber ballistic impact and dynamic indentation on a 3D glass fiber reinforced composite are presented. Microscopic analysis of the damaged specimens revealed that the current 3D weaving scheme creates inherently two weak planes which act as potential sites for delamination in the above experiments. It is concluded that while the z-yarns may be effective in limiting the delamination damage at low loads and at low rates of impact, at high loads and high loading rates delamination continues to be the dominant failure mode in 3D woven composites. It is shown that dynamic indentation can be used to capture the progression of damage during impact of 3D woven composites.  相似文献   

5.
This paper presents a comprehensive study on the tensile, compressive, and flexural performance of six types of 3D woven carbon-fibre/epoxy composites which were manufactured using a traditional narrow fabric weaving loom and resin transfer moulding. Four orthogonal and two angle-interlock weaves were tested with the primary loading direction parallel to the warp direction. The mechanical performance was found to be affected by the distribution of resin rich regions and the waviness of the load-carrying fibres, which were determined by the fibre architectures. The binding points within the resin rich regions were found to be the damage initiation sites in all weave types under all loading conditions, which were confirmed with both visual observation and digital image correlation strain maps. Among all weave types, the angle interlock weave W-3 exhibited the highest properties under all loading conditions.  相似文献   

6.
3D-woven fabrics incorporate through-thickness reinforcement and can exhibit remarkable inter-laminar properties that aid damage suppression and delay crack propagation. However, distortions in the internal architecture such as yarn waviness can reduce in-plane properties, especially in compression. The degree of yarn waviness present in a 3D woven fabric can be affected by a range of factors including weave parameters and manufacturing-induced distortions such as fabric compaction. This paper presents a thorough analysis of the effect of fabric compaction and yarn waviness on the mechanical properties and failure mechanisms of an angel-interlock fabric in compression. Tests were conducted on coupons moulded to different volume fractions and data compared to previous measurements of local yarn angle. Major findings show the importance of yarn straightness on compressive strength and how this can be affected by optimising moulding thickness. Failure initiation was also found to be heavily influenced by weave style and yarn interlacing.  相似文献   

7.
Interpenetrating phase composites (IPCs) are novel types of multifunctional composite materials. This work focuses on investigating experimentally and computationally the mechanical behavior of novel types of three-dimensional (3D) architectured two-phase IPCs. The current IPCs are architectured using several morphologies of the fascinating and mathematically-known triply periodic minimal surfaces (TPMS) that promote several multifunctional attributes. Specifically, the second hard reinforcing phase takes the architecture of one of the 3D non-intersecting and continuous TPMS-based solid sheets. The mechanical response of the 3D printed polymer-based IPCs is measured under uniaxial compression where the effect of varying the second-phase architecture and volume fraction is explored. Anisotropy induced by the 3D printing is also investigated. 3D finite element analysis has been performed and validated for predicting elastic properties of the various types of TPMS-based IPCs. The most effective TPMS architecture in enhancing the mechanical properties and damage-tolerance has been identified.  相似文献   

8.
Three different architectures of 3D carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) were tested in quasi-static uniaxial tension. Mechanical tests (tensile in on-axis of warp and weft directions as well as 45° off-axis) were carried out with the aim to study the loading direction sensitivity of these 3D woven composites. The z-binder architecture (the through-thickness reinforcement) has an effect on void content, directional fibre volume fraction, mechanical properties (on-axis and off-axis), failure mechanisms, energy absorption and fibre rotation angle in off-axis tested specimens. Out of all the examined architectures, 3D orthogonal woven composites (ORT) demonstrated a superior behaviour, especially when they were tested in 45° off-axis direction, indicated by high strain to failure (∼23%) and high translaminar energy absorption (∼40 MJ/m3). The z-binder yarns in ORT architecture suppress the localised damage and allow larger fibre rotation during the fibre “scissoring motion” that enables further strain to be sustained by the in-plane fabric layers during off-axis loading.  相似文献   

9.
Rapidly increasing packaging density of electronic devices puts forward higher requirements for thermal conductivity of glass fibers reinforced polymer (GFRP) composites, which are commonly used as substrates in printed circuit board. Interface between fillers and polymer matrix has long been playing an important role in affecting thermal conductivity. In this paper, the effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled GFRP composites was evaluated. The results indicated that amino groups-Al2O3 was demonstrated to be effective filler to fabricate thermally conductive GFPR composite (1.07 W/m K), compared with epoxy group and graphene oxide functionalized Al2O3. It was determined that the strong adhesion at the interface and homogeneous dispersion of filler particles were the key factors. Moreover, the effect of interfacial state on dielectric and thermomechanical properties of GFRP composites was also discussed. This research provides an efficient way to develop high-performance GFRP composites with high thermal conductivity for integrated circuit packaging applications.  相似文献   

10.
High-strain-rate compression experiments were performed on 3D MWK carbon/epoxy composites with different fiber architectures at room and elevated temperature using an SHPB apparatus. Macro-fracture and SEM micrographs were examined to understand the failure mechanism. The results show the dynamic properties increase with the strain rate and show a high-strain-rate sensitivity. Meanwhile, composites with [0°/0°/0°/0°] have higher properties. Moreover, composites show temperature sensitivity and the properties decrease significantly, especially for composites with [0°/90°/+45°/−45°]. The results also indicate composites take on more serious damage and failure with the strain rate. The failure of composites with [0°/0°/0°/0°] behaves in multiple delaminating, overall expansion and 0° fibers tearing. While that of composites with [0°/90°/+45°/−45°] is mainly interlaminar delaminating, local fibers tearing and fracture on different fiber layers. In addition, with increasing the temperature, the composite shows less fracture and becomes more plastic. The damage of matrix yielding, interface debonding and twisting of fibers increase significantly.  相似文献   

11.
In this paper, evaluation of 3D orthogonal woven fabric composite elastic moduli is achieved by applying meshfree methods on the micromechanical model of the woven composites. A new, realistic and smooth fabric unit cell model of 3D orthogonal woven composite is presented. As an alternative to finite element method, meshfree methods show a notable advantage, which is the simplicity in meshing while modeling the matrix and different yarns. Radial basis function and moving kriging interpolation are used for the shape function constructions. The Galerkin method is employed in formulating the discretized system equations. The numerical results are compared with the finite element and the experimental results.  相似文献   

12.
The mode I delamination fracture toughness and fatigue strength of thin-section three-dimensional (3D) woven composite materials is experimentally determined. The non-crimp 3D orthogonally woven carbon–epoxy composites were thin (2 mm) and consequently their through-thickness z-binder yarns were inclined at a very steep angle (about 70°) from the orthogonal direction. The steep z-binder angle has a marked effect on the delamination toughening and fatigue strengthening mechanisms. Experimental testing revealed that the fracture toughness and fatigue resistance increased progressively with the volume content of z-binders. However, the steep angle caused the z-binder yarns bridging the delamination crack to deform and fail in shear and through-thickness tension, rather than in-plane tension which usually occurs in thick 3D woven composites. Mode I pull-off tests on a single woven z-binder yarn embedded within the composite revealed that the crack bridging traction load, strain energy absorption and failure mechanism were strongly affected by the steep angle.  相似文献   

13.
In the present work, carbon nanotube (CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive CNT fiber to the non-conductive GFRP material aims to enhance its multi-function ability; the test specimen’s response to mechanical load and the insitu CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. It is the first time this fiber is used in composite materials for sensing purposes; CNT fiber is easy to be embedded and does not downgrade the material’s mechanical properties. Various incremental loading–unloading steps had been applied to the manufactured specimens in tension as well as in three-point bending tests. The CNT fiber worked as a sensor in both, tensile and compression loadings. A direct correlation between the mechanical loading and the electrical resistance change had been established for the investigated specimens. For high stress (or strain) level loadings, residual resistance measurements of the CNT fiber were observed after unloading. Accumulating damage to the composite material had been calculated and was correlated to the electrical resistance readings. The established correlation between these parameters changed according to the material’s loading history.  相似文献   

14.
A significant improvement in fiber reinforced polymeric composite (FRPC) materials can be obtained by incorporating a very small amount of nanofiller in the matrix material. In this work, an ultrasonic liquid processor was used to infuse carbon nanofiber (CNF) into the polyester matrix which was then mixed with catalyst using a mechanical agitator. Both conventional and CNF-filled glass-fiber reinforced polyester composites (GRPC) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Excellent dispersion of CNFs into the polyester resin was observed from the scanning electron microscopy (SEM) micrographs. Flexural and quasi-static tests were performed for investigating the mechanical responses. Fracture surface was examined using optical microscopy (OM) and SEM. Flexure tests performed on the conventional GRPC, 0.1–0.4 wt.% CNF-filled GRPC showed up to 49% and 31% increase in the flexural strength and modulus, respectively, compared to the conventional one with increasing loading of CNFs up to 0.2 wt.%. Similar trend was seen in quasi-static compression properties. SEM evaluation revealed relatively less damage in the tested fracture surfaces of the nanophased composites in terms of matrix failure, fiber breakage, matrix–fiber debonding, and delamination, compared to the conventional one. This might be the result of better interfacial interaction between matrix and fibers, due to the presence of CNFs.  相似文献   

15.
This study aims at understanding and improving the compaction of 3D carbon interlock fabrics with water lubrication, high temperature and a combination of them. The creep compaction behavior was characterized in a mechanical testing machine under different lubrication and temperature conditions. Three different interlock fabrics were studied at high temperature in order to assess the influence of the weaving pattern on the creep compaction behavior. Finally, an experimental study was carried out to point the impact of fiber sizing on the creep compaction behavior and its evolution with temperature. The results of this work demonstrate the strong impact of temperature and lubrication on the compaction ability of 3D interlock fabrics and its link to the fiber sizing.  相似文献   

16.
Concrete is a composite material composed of water, sand, coarse granular material called aggregate and cement that fills the space among the aggregate particles and glues them together. Conventional building structures are made up of steel skeleton with concrete impregnation. These are very heavy weight structures with steel vulnerable to corrosion. The conventional concrete structures tend to undergo large deformations in the event of a strong earthquake. Mechanical simulation of various textile structural concretes is carried out successfully for their ductility behaviour. 3D woven reinforced concretes display superior ductile character showing ray of hope to develop seismic resistant building. Simulation of three 3D woven fabrics and their composites was carried to predict ductility and strengths of fabric reinforced concrete structures. Maximum deformation was observed for beam reinforced with orthogonal interlock fabric under the same load and minimum deformation was observed for plain concrete. Maximum equivalent stress was observed to be highest for plain concrete followed by beam reinforced with angle interlock fabric followed by orthogonal fabric and warp interlock fabric under similar loading conditions. From the results it was clear that 3D fabric reinforced structures are more ductile than the traditional steel reinforced structures. Hence 3D fabric reinforced concrete structures are much better in strength and ductility as compared to conventional construction materials. Among the three 3D fabric, orthogonal fabric reinforced composites are most ductile and are also less stiff. They can deform more than the other two fabric composites. Hence, orthogonal fabric reinforced composites can undergo higher deformations without collapsing. These composites can be more elastic under earthquake shaking.  相似文献   

17.
A PMR polyimide composite reinforced with three-dimensional (3D) woven basalt fabric is fabricated for medium high temperature applications. The PMR polyimide matrix resin is derived from 4,4′-methylenediamine (MDA), diethyl ester of 3,3′,4,4′-oxydiphthalic (ODPE) and monoethyl ester of Cis-5-norbornene-endo-2,3-dicarboxylic acid (NE). The rheological properties of the PMR polyimide matrix resin are investigated. Based on the curing reaction of the PMR type polyimide and the rheological properties, an optimum two-step fabrication method is proposed. The three dimensional fabric preforms are impregnated with the polyimide resin in a vacuum oven at 70 °C for 1 h followed by removing the solvent and pre-imidization. The composites are then consolidated by an optimized molding procedure. Scanning electron microscopy analysis shows that needle shaped voids are generated in yarns and the void volume fraction is 4.27%. The decomposition temperature and the temperature at 5% weight loss of the composite post-cured at 320 °C for 24 h are 440 °C and 577 °C, respectively. The dielectric constant and the dielectric loss of the composite are measured by circular cavity method at 7–12 GHz. The tensile strength and the modulus in the warp direction of the composite are 436 MPa and 22.7 GPa. The composite shows a layer-by-layer fracture mode in three-point bending test. The flexure strength and modulus in the warp direction of the composite are 673 MPa and 27.1 GPa, respectively.  相似文献   

18.
Impact tests with a falling dart and flexural measurements were carried out on polypropylene based laminates reinforced with glass fibers fabrics. Research has shown that the strong fiber/matrix interface obtained through the use of a compatibilizer increased the mechanical performance of such composite systems. The improved adhesion between fibers and matrix weakly affects the flexural modulus but strongly influences the ultimate properties of the investigated woven fabric composites. In fact, bending tests have shown a clear improvement in the flexural strength for the compatibilized systems, in particular when a high viscosity/high crystallinity polypropylene was used. On the contrary, the low velocity impact tests indicated an opposite dependence on the interface strength, and higher energy absorption in not compatibilized composites was detected. This result has been explained in terms of failure mechanisms at the fiber/matrix interface, which are able to dissipate large amounts of energy through friction phenomena. Pull-out of fibers from the polypropylene matrices have been evidenced by the morphological analysis of fracture surfaces after failure and takes place before the fibers breakage, as confirmed by the evaluation of the ductility index.  相似文献   

19.
During the preforming stage in Liquid Composite Molding (LCM), fibrous reinforcements are compacted to obtain the specified fiber volume fraction. Numerous studies have been carried out to understand their compression behaviors. The first objective of this investigation is to study experimentally the influence of the weaving parameters on the compaction behavior of five different 3D Interlock fabrics. In parallel, composite parts were fabricated to perform a microscopic analysis of fabric deformation after compression. The second objective is to provide a model of the experimental results. Since there is no nesting in three-dimensional woven fabrics, the compaction behavior turns out to be easier to predict than for laminates. A model based on experimental observations was devised to connect the compaction behavior with the deformation modes of five fabrics investigated. The good correlation with experiments confirms the assumptions on the main factors governing the compaction and relaxation of 3D Interlock fabrics.  相似文献   

20.
An investigation at the unit cell level of the sheared geometry of a single layer E-glass non-crimp 3D orthogonal woven reinforcement (commercialized under trademark 3WEAVE® by 3Tex Inc.) is performed by X-ray micro-computed tomography (micro-CT) observations. The aim is to observe, understand and quantify the effect of in-plane shear deformation on the composite reinforcement geometry, at meso-scale (i.e. unit cell level). It was observed that, increasing the shear deformation, Z-yarns maintain unchanged the distance between the yarns and as consequence the yarn cross-section has a reduced variation of width, mainly in the weft direction.Furthermore, the effect of the shear angle on the textile thickness during compression is measured, this being an important parameter after the forming and molding phases of a composite component production. Compression tests and micro-CT measurements of the thickness show similar values and are in agreement with the prediction obtained assuming the theoretical invariance of the volume in the considered range of shear deformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号