共查询到20条相似文献,搜索用时 0 毫秒
1.
Compression properties of z-pinned composite laminates 总被引:4,自引:0,他引:4
The effect of z-pinning on the in-plane compression properties and failure mechanisms of polymer laminates is experimentally studied in this paper. The reduction to the compression modulus, strength and fatigue performance of carbon/epoxy laminates with increasing volume content and diameter of pins is determined. The elastic modulus decreases at a quasi-linear rate with increasing pin content and pin diameter. Softening is caused by fiber waviness around the pins and reduced fiber volume content due to volumetric swelling of the laminate from the pins. A simple model is presented for calculating the compression modulus of pinned laminates that considers the softening effects of fiber waviness and fiber dilution. The compression strength and fatigue life also decrease with increasing volume content and diameter of the pins. The strength and fatigue properties are reduced by fiber kinking caused by fiber waviness around the pins and the reduced fiber content caused by swelling. The deterioration to the compression properties is also dependent on the fiber lay-up pattern of the laminate, with the magnitude of the loss in properties increasing with the percentage of 0° (load bearing) fibers in the laminate. The paper gives suggestions for minimizing the loss to the compression properties to laminates due to pinning. 相似文献
2.
This study aims at understanding and improving the compaction of 3D carbon interlock fabrics with water lubrication, high temperature and a combination of them. The creep compaction behavior was characterized in a mechanical testing machine under different lubrication and temperature conditions. Three different interlock fabrics were studied at high temperature in order to assess the influence of the weaving pattern on the creep compaction behavior. Finally, an experimental study was carried out to point the impact of fiber sizing on the creep compaction behavior and its evolution with temperature. The results of this work demonstrate the strong impact of temperature and lubrication on the compaction ability of 3D interlock fabrics and its link to the fiber sizing. 相似文献
3.
Lijun QinZhongwei Zhang Xiaofeng LiXiaoguang Yang Zhihai FengYang Wang Hong MiaoLinghui He Xinglong Gong 《Composites Part A》2012,43(2):310-316
In this work, the digital image correlation (DIC) technique was used as full-field measurement to analyze the shear properties of the 3D orthogonal woven C/C composites. Both the in-plane and the through-the-thickness specimens were tested and the macroscopic average strain was obtained. The composites were composed of lots of periodic units and the macroscopic average strain was dependent on these meso-structures. There were three regions within one unit, which showed different mesoscopic strain. The relationship between the shear test region and the macroscopic average strain was systematically studied. Finally, the accuracy of conventional strain-gauge rosette measurement was also discussed. 相似文献
4.
Mechanisms of unit yarn-reduction braiding were investigated and preform microstructures were characterized by digital image photography and topological analysis. Flexural properties and failure mechanisms of the unit yarn-reduction composites, cut composites and uniform composites were compared. Results indicated that continuity of the braiding process must be ensured after yarn reduction and distribution of the reduction units should be uniform. A smoothly trapezoidal profile appeared near the unit yarn-reduction cross-section and braiding angles and yarn lengths in the surface or interior yarn-reduction control volumes all increased. Flexural properties of the unit yarn-reduction composites were significantly higher than those of the cut composites and slightly lower than the uniform composites. The damage process of the yarn-reduction composites can be divided into the initial, developing and serious damage stages with yarn breakage being the dominant failure mechanism, while the primary failure mechanisms of the cut composites were matrix microcracking and fiber pulling-out. 相似文献
5.
The current literature on three-dimensional (3D) needle-punched composites tends to address the aspects of preforms fabrication and composites characterization respectively. This paper aims to bring together these two aspects to provide readers with a comprehensive understanding of the subject of 3D needle-punched reinforcements for composites. Consequently, this paper contains a detailed outline of the current state of 3D needle-punched technology for manufacturing advanced composite preforms. Properties of 3D needle-punched composites and some of the predictive models available for determining these properties are also reviewed. To conclude, a number of current and potential applications of 3D needle-punched preforms for engineering composites are highlighted, and issues impeding the use of 3D needle-punched composites are also summarized. 相似文献
6.
High-strain-rate compression experiments were performed on 3D MWK carbon/epoxy composites with different fiber architectures at room and elevated temperature using an SHPB apparatus. Macro-fracture and SEM micrographs were examined to understand the failure mechanism. The results show the dynamic properties increase with the strain rate and show a high-strain-rate sensitivity. Meanwhile, composites with [0°/0°/0°/0°] have higher properties. Moreover, composites show temperature sensitivity and the properties decrease significantly, especially for composites with [0°/90°/+45°/−45°]. The results also indicate composites take on more serious damage and failure with the strain rate. The failure of composites with [0°/0°/0°/0°] behaves in multiple delaminating, overall expansion and 0° fibers tearing. While that of composites with [0°/90°/+45°/−45°] is mainly interlaminar delaminating, local fibers tearing and fracture on different fiber layers. In addition, with increasing the temperature, the composite shows less fracture and becomes more plastic. The damage of matrix yielding, interface debonding and twisting of fibers increase significantly. 相似文献
7.
This paper summarizes an extensive experimental study of composites reinforced with three-dimensional woven preforms subjected to tensile, compressive and in-plane shear loading. Three innovative three-dimensional woven architectures were examined that utilize large 12 K and 24 K IM7 carbon tows, including two ply to ply angle interlock architectures and one orthogonal architecture. Additionally, a two-dimensional quasi-isotropic woven material was evaluated for comparison. Loads were applied in both the warp and the weft directions for tensile and compressive loading. Digital image correlation was used to investigate full field strains leading up to quasi-static failure. Experimental results including ultimate strengths and moduli are analyzed alongside representative failure modes. The orthogonal woven material was found to have both greater strength and modulus in tension and compression, though a ply to ply woven architecture was found to outperform the remaining three-dimensional architectures. Recommendations are made for improving the manufacturing processes of certain three-dimensional woven architectures. 相似文献
8.
During the preforming stage in Liquid Composite Molding (LCM), fibrous reinforcements are compacted to obtain the specified fiber volume fraction. Numerous studies have been carried out to understand their compression behaviors. The first objective of this investigation is to study experimentally the influence of the weaving parameters on the compaction behavior of five different 3D Interlock fabrics. In parallel, composite parts were fabricated to perform a microscopic analysis of fabric deformation after compression. The second objective is to provide a model of the experimental results. Since there is no nesting in three-dimensional woven fabrics, the compaction behavior turns out to be easier to predict than for laminates. A model based on experimental observations was devised to connect the compaction behavior with the deformation modes of five fabrics investigated. The good correlation with experiments confirms the assumptions on the main factors governing the compaction and relaxation of 3D Interlock fabrics. 相似文献
9.
3D-woven fabrics incorporate through-thickness reinforcement and can exhibit remarkable inter-laminar properties that aid damage suppression and delay crack propagation. However, distortions in the internal architecture such as yarn waviness can reduce in-plane properties, especially in compression. The degree of yarn waviness present in a 3D woven fabric can be affected by a range of factors including weave parameters and manufacturing-induced distortions such as fabric compaction. This paper presents a thorough analysis of the effect of fabric compaction and yarn waviness on the mechanical properties and failure mechanisms of an angel-interlock fabric in compression. Tests were conducted on coupons moulded to different volume fractions and data compared to previous measurements of local yarn angle. Major findings show the importance of yarn straightness on compressive strength and how this can be affected by optimising moulding thickness. Failure initiation was also found to be heavily influenced by weave style and yarn interlacing. 相似文献
10.
Three-dimensional braided carbon fiber-reinforced ZrC matrix composite, 3-D Cf/ZrC, were prepared by liquid metal infiltration process at 1200 °C using a Zr2Cu intermetallic compound as infiltrator. The microstructure and properties of the composites were investigated. The results indicated that ZrC with a yield of 35.2 ± 1.8 vol.% was certified as the major phase of the composites. The formation of ZrC was controlled by a solution-precipitation mechanism. The obtained composites exhibited good mechanical properties, with a flexural strength of 293.0 ± 12.1 MPa, a flexural modulus of 82.7 ± 6.4 GPa and a fracture toughness of 9.8 ± 0.9 MPa m1/2. The mass and linear ablation rates of the composites exposed to oxyacetylene torch were 0.0013 ± 0.0005 g s−1 and −0.0009 ± 0.0003 mm s−1, respectively. The formation of a dense ZrO2 protective layer and the evaporation of residual Cu contributed mainly to the excellent ablation resistance. 相似文献
11.
New three dimensional (3D) braided single poly (lactic acid) composites (PLA–SPCs) were obtained by combining 3D and five (5)-direction braiding technique and hot-compression technical process. 3D and 5-direction braided preforms with different braiding angles, thicknesses and fiber volume fractions were prepared. Preforms were preheated in the specially designed die system in order to make all of the fibers partially melted. In the next stage, the preforms were consolidated under a certain pressure (from 7.8 to 10 MPa) at temperatures ranging from 130 up to 150 °C. Under the controlled processing conditions, one part of fiber body formed matrix while the other part retained its fibrous form.At the same consolidation temperature, the maximum bending stress values resulted to be substantially dependent on the fiber volume fraction of PLA–SPCs, while the bending modulus values were largely subjected to the fiber content in the length direction. The increases of consolidation pressure gave rise to better fusion of neighboring fibers with the result that the maximum stress and modulus were increased. As the consolidation temperature increases, the fusion bonding was improved, the bending failure feature was converted from plastic to brittle, both maximum bending stress and modulus values were increased. It is expected that this study could provide a new approach for the manufacture of high-performance single polymer composites (SPCs) by using thermoplastic polymer fibers. 相似文献
12.
Novel glass fiber (GF)/bismaleimide composites with significantly improved flame retardancy, higher mechanical strength and lower dielectric loss were developed, of which the resin matrix is a new flame retarding resin system (BDDP) based on 4,4′-bismaleimidodiphenyl methane (BDM), 2,2′-diallyl bisphenol A (DBA) and [(6-oxido-6H-dibenz [c,e] [1,2] oxaphosphorin-6-yl)-methyl]-butanedioic acid (DDP). The influence of the loading of DDP in the matrix on the integrated performances of composites was intensively studied. Results show that GF/BDDP composites not only have significantly improved mechanical and dielectric properties, but also possess excellent flame retardancy. The main flame retarding mechanism of GF/BDDP composites is the condensed phase mechanism. The introduction of DDP significantly strengthens the interfacial adhesion between GF and the resin matrix, this is responsible for the attractive performances of GF/BDDP composites. 相似文献
13.
Diametral compression tests were performed on pultruded composite rods comprised of unidirectional glass or carbon fibers in a common matrix. During compression tests, acoustic emission (AE) activity was recorded and images were acquired from the sample for analysis by digital image correlation (DIC). In both composite systems, localized tensile strain developed in the transverse plane under the load platens prior to failure, producing non-linearity in the load–displacement curve and AE signals. In situ SEM diametral compression tests revealed the development of matrix microcracking and debonding in regions of localized strain, perpendicular to the tensile strain direction (parallel to the load axis). Comparison of linear finite element simulations and experimental results showed a deviation from linear elastic behavior in the load displacement curve. The apparent transverse modulus, in plane shear modulus, and transverse tensile strength of the GF rod was greater than that of the CF rod, and fracture surfaces indicated greater fiber/matrix adhesion in the GF system compared to the CF system. A mixed mode fracture surface showed that two failure modes were active – matrix tensile failure and matrix compression failure by shear near the loading edge. 相似文献
14.
Constitutive equations describe intrinsic relationships among sets of material system parameters. This study utilizes artificial neural networks in place of a traditional micromechanical approach to calculate the global (macroscopic) elastic properties of composite materials given the local (microscopic) properties and local geometry. This approach is shown to be more computationally efficient than conventional numerical micromechanical approaches. An eight sub-celled representative volume element is used for the local geometry. Multi target artificial neural networks (MTANNs) and single target artificial neural networks are studied for applicability in predicting the global properties. The best performing MTANN achieves a precision of 9%. The single target artificial neural networks (STANNs) perform best and predicts the global properties within a target error of 5.3%. The computation time is 1.8 s for all six STANNs to predict six global properties for 19,683 different microstructures. 相似文献
15.
A significant improvement in fiber reinforced polymeric composite (FRPC) materials can be obtained by incorporating a very small amount of nanofiller in the matrix material. In this work, an ultrasonic liquid processor was used to infuse carbon nanofiber (CNF) into the polyester matrix which was then mixed with catalyst using a mechanical agitator. Both conventional and CNF-filled glass-fiber reinforced polyester composites (GRPC) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Excellent dispersion of CNFs into the polyester resin was observed from the scanning electron microscopy (SEM) micrographs. Flexural and quasi-static tests were performed for investigating the mechanical responses. Fracture surface was examined using optical microscopy (OM) and SEM. Flexure tests performed on the conventional GRPC, 0.1–0.4 wt.% CNF-filled GRPC showed up to 49% and 31% increase in the flexural strength and modulus, respectively, compared to the conventional one with increasing loading of CNFs up to 0.2 wt.%. Similar trend was seen in quasi-static compression properties. SEM evaluation revealed relatively less damage in the tested fracture surfaces of the nanophased composites in terms of matrix failure, fiber breakage, matrix–fiber debonding, and delamination, compared to the conventional one. This might be the result of better interfacial interaction between matrix and fibers, due to the presence of CNFs. 相似文献
16.
This paper presents an experimental investigation into the flat-wise compression properties, strengthening mechanisms and failure modes of sandwich composite materials reinforced with orthogonal z-pins. The compression modulus of the sandwich composite increases rapidly with the volume content of z-pins due to their high longitudinal stiffness, however acoustic emission monitoring and X-ray computed tomography reveal that some z-pins are damaged during elastic loading. The compression stress to induce core crushing is increased greatly by z-pinning (up to nearly 700%), although a large percentage of the z-pins fail close to the elastic stress limit by longitudinal splitting and/or kinking. The total absorbed compressive strain energy of the sandwich composite is also improved greatly by z-pinning (more than 600%) due to the z-pins resisting core crushing, even though they are severely damaged. The results and observations presented in this paper have implications on the mechanical modelling of sandwich materials reinforced with brittle z-pins. 相似文献
17.
This study presents a methodology to accurately embed EFPI (Extrinsic Fabry Perot Interferometer) fibre optic sensors within the resin channels of 3D woven composite for the purpose of monitoring strain during tensile tests on a 3D woven composite. Using the same sensors the cure induced strain measurement was developed into a valid in situ cure monitoring technique for an epoxy matrix composite through correlation with rheological based cure strain data. Specific strain events were attributed to the gelation and vitrification phases of the epoxy cure cycle. 相似文献
18.
Interpenetrating phase composites (IPCs) are novel types of multifunctional composite materials. This work focuses on investigating experimentally and computationally the mechanical behavior of novel types of three-dimensional (3D) architectured two-phase IPCs. The current IPCs are architectured using several morphologies of the fascinating and mathematically-known triply periodic minimal surfaces (TPMS) that promote several multifunctional attributes. Specifically, the second hard reinforcing phase takes the architecture of one of the 3D non-intersecting and continuous TPMS-based solid sheets. The mechanical response of the 3D printed polymer-based IPCs is measured under uniaxial compression where the effect of varying the second-phase architecture and volume fraction is explored. Anisotropy induced by the 3D printing is also investigated. 3D finite element analysis has been performed and validated for predicting elastic properties of the various types of TPMS-based IPCs. The most effective TPMS architecture in enhancing the mechanical properties and damage-tolerance has been identified. 相似文献
19.
Polyvinyl alcohol–carbon nanotube (PVA–CNT) fibers were embedded in glass fiber reinforced plastic composites and used as strain sensors for damage monitoring of the composite. Sensing of the structural integrity of the composite was made by the in situ measurement of the electrical resistance of the embedded PVA–CNT fiber during the mechanical tests. The multi-functional materials were tested in tensile progressive damage accumulation (PDA) tests. These tests aimed to seek the electrical response of untreated and pre-stretched PVA–CNT fibers with known level of progressively induced damage to the composite. The advantages and disadvantages of each PVA–CNT fiber used as a sensor are analyzed; the electrical resistance readings of the PVA–CNT fibers were correlated with known parameters that express the induced damage of the composite. 相似文献
20.
A new method for fabricating glass fiber composite sandwich panel with pyramidal truss cores was developed based on the vacuum assisted resin transfer molding technology. The microstructure and organizations of fabricated sandwich panels were examined by the scanning electron microscope. The out-of-plane compressive tests of composite sandwich panels were performed throughout the temperature range from −60 °C to 125 °C. Then the effects of temperature on the compressive strength, compressive modulus and failure mechanism were investigated and analyzed. Our results indicated that cryogenic temperature resulted in the increasing of the compressive modulus and strength, while high temperature caused the degradation of the compressive modulus and strength. The effect of temperature on failure mode of composite sandwich panel was also observed. Analytical expressions were presented to predict the compressive modulus and strength of composite sandwich panels at different temperatures. 相似文献