首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid laminated composites were fabricated based on high-density flexible polyurethane foam and reinforced with inter/intra-ply hybrid laminates. Transient responses of hybrid composites under quasi-static and dynamic loadings with various thicknesses and expansion factors were comparatively investigated. Experimental results revealed that foam cell collapse and hybrid laminates rupture were dominant mechanisms of energy absorption. Interlaminar stress and composite tensile strength determined the compressive potential energy and double-peak behavior. Quasi-static bursting and puncture resistances exhibited totally different relationships to various constructions and expansion factors. Energy dissipation capacity is influenced more significantly by the constant rate of transverse (CRT) puncture than dynamic puncture process. CRT puncture resistance is superior to the corresponding dynamic puncture resistance for all constructions. The hybrid laminated composites contributes to eliminate more than 95% of the incident force in the drop weight impact test. Compared with non-laminated panel, the hybrid laminated composites exhibited higher resistance to static and dynamic loadings.  相似文献   

2.
Nonwoven fabrics were used as reinforcement to laminated composites to improve the mechanical properties and damage behaviors. The needle-punched Kevlar/LMPET nonwoven interlayer and two TPU covers were combined via thermal bonding to form the laminated composites. Tensile strength, peel load, and static puncture resistance of the laminated composites were evaluated in terms of needle punching rate and depth of the nonwoven interlayer. Results showed that tensile strength and static puncture resistance depended on the needle punching depth, primarily on the tangled fiber points. The peel load was dependent on the needle punching rate, especially on the resulting melted LMPET fibers. The laminated composites exhibited desirable tensile properties, peel load, and static puncture resistance.  相似文献   

3.
The polyethylene non-woven felt, Dyneema Fraglight, has excellent capabilities to stop bomb fragments. According to the manufacturer, a felt with an areal density of 1.2 kg/m2 stops a 17-grain projectile at 450 m/s. The research presented in this paper aims at improving our understanding of how non-woven felts work. Static tensile tests were performed at different strain rates and temperatures. The static tensile tests showed that there is an important size effect: the strength of the specimens decreases when increasing the size of the specimen, for lengths of 5 cm or less. This effect is expected since the felt is made by mixing, combing and needle punching of 5-cm-long fibers. The tests also showed that the felt is anisotropic and that at a temperature of 100 °C it loses a significant part of both its strength and strain to failure. Tensile tests at medium (1 s−1) and high strain rates (1000 s−1) did not show any evidence of strain rate dependence. Out-of-plane punching tests, designed to help with the modeling, were also performed and the results are presented.  相似文献   

4.
In this paper, the low velocity impact behavior of homogenous and hybrid composite laminates reinforced by basalt–nylon intra-ply fabrics was experimentally investigated. Epoxy resin was used as matrix material. The purpose of using this hybrid composite is to combine the good mechanical properties of basalt fiber with the excellent impact resistant of nylon fiber. Five different types of woven fabrics were used as reinforcement with different volume percentages of nylon (0%, 25%, 33.3%, 50% and 100%). The effect of nylon/basalt fiber content on maximum force, maximum deflection, residual deflection, total absorbed energy, elastic energy, size and type of damage were studied at several low velocity impact nominal energy levels (16, 30 and 40 J). The results indicate that impact performance of these composites is significantly affected by the nylon/basalt fiber content. The visual inspection and ultrasonic C-scan of the impact damaged specimens reveals that content of nylon/basalt fiber controls the type and size of damage.  相似文献   

5.
The mechanical and morphological properties of polypropylene/hydroxyapatite/linear low density polyethylene ternary bio-composites which were produced by blending of polypropylene (PP), hydroxyapatite, modified and unmodified linear low density polyethylene (LLDPE) were studied. In this research, effects of LLDPE weight percent, modification of PP/LLDPE interface by a high crystallizable high density polyethylene, and the method of blending on tensile strength, Young’s modulus and impact absorbed energy of composites were investigated. Results of mechanical tests showed that by adding LLDPE to these composites, ultimate tensile strength and Young’s modulus of the composites dropped slightly, while their impact strength was increased significantly. Mechanical properties of composites were improved by modification of PP/LLDPE interface and changing from one-step blending to two-step blending. However, for the composites produced by two-step blending, by adding modified LLDPE (15 wt.%), the impact strength was 90% more than that of pure PP/HA composites. Fractography of the surface fractures of the impact samples for both types of composites were performed using a scanning electron microscope (SEM). Two different toughening mechanisms of these composites were distinguished by drawing a schematic sketch of the mechanisms.  相似文献   

6.
Effects of linear density and yarn structure on both static and dynamic mechanical properties of ramie fiber yarn reinforced composites (RYRCs) were investigated. The failure mechanisms of RYRCs were analyzed with the aid of ultrasonic C-scan and Scanning electronic microscopy (SEM). The results showed that the tensile strength of RYRCs increased gradually with increase of the linear density of the single yarns. The maximum tensile strength was obtained when the linear density reached 67.3 tex. However, a downtrend of the tensile strength was observed with further increase of the linear density of ramie single and plied yarns. The interlaminar fracture toughness was relatively high for RYRCs made from yarns with lower linear density due to the extensive fiber bridging observed during the double cantilever beam test. Meanwhile, the linear density and structure of ramie yarn had remarkable influence on the failure mode of RYRCs during the drop weight impact test.  相似文献   

7.
Low-velocity impact tests were performed to investigate the impact behaviour of carbon fibre/epoxy composite laminates reinforced by short fibres and other interleaving materials. Characterisation techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates at the sub-surface under impact. Scanning electron microscopy was used to observe impact fractures and damage modes at the fracture surfaces of the laminate specimens. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking, fibre breakage and damage depending on the interlayer materials. The trade-off between impact resistance and residual strength is minimised for composites reinforced by Zylon fibres, while that for composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is substantial because of deteriorating residual strength, even though the damaged area is significantly reduced. Damages produced on the front and back surfaces of impact were also observed and compared for some laminates.  相似文献   

8.
Carbon nanotube-alumina hybrid reinforced high density polyethylene (HDPE) matrix composites were prepared by melt processing technique. Microstructure studies verified that the nanotubes consisting of well-crystallized graphite formed a network structure with Al2O3 in the hybrid, which was homogeneously dispersed in the HDPE matrix composites. Mechanical measurements revealed that 5% addition of nanotube-alumina hybrid results in 100.8% and 65.7% simultaneous increases in Young's modulus and tensile strength, respectively. Fracture surface showed homogenous dispersion of nanotubes and Al2O3 in the HDPE matrix and presence of interlocking like phenomena between hybrid and HDPE matrix, which might contribute to the effective reinforcement of the HDPE composites.  相似文献   

9.
A new design for thermoplastic composites based on the gradation of the interlaminar interface strength (IGIS) has been developed with the aim of coupling high impact resistance with high static properties. IGIS laminates have been prepared by properly alternating layers of woven fabric with layers of compatibilized or not compatibilized polymeric films. To prove the new concept, polypropylene (PP) and glass fibres woven fabrics have been used to prepare composites by using the film stacking technique. Maleated PP, able to compatibilize polypropylene with glass fibres, has been used to manage the interface strength layer by layer.The flexural and low-velocity impact characterizations have shown that the presence of the coupling agent in conventional composite structures (prepared with fully compatibilized polymeric layers) improves the static flexural properties through the strengthening of the matrix/fibre interface but considerably lowers the low velocity impact resistance of the composite, in terms of maximum load before fibre breakage and recovered energy after impact. The use of the IGIS design, that grade the interface strength through the laminate thickness, allows to prepare composites with both high flexural properties and high impact resistance, without affecting the balance and type of the reinforcement configuration.  相似文献   

10.
We present the preparation of novel thermoplastic composites elastomer material based on poly (styrene–butadiene–styrene) (SBS), ester-type polyurethane (TPU-EX) and ether-type polyurethane (TPU-ER) materials via melt blending. A series of studies were conducted on the relationship between their morphology, thermal resistance, mechanical properties, and dynamic damping properties, given different compositions. An important feature of the SBS/TPU composites elastomer materials of all compositions is their uniform transparency, because the particles are very small with a narrow size distribution and the refractive indices of SBS and TPU are coincide. Additionally, the thermal resistance, dynamic damping properties and mechanical properties of SBS before and after thermal aging are improved as the amount of added TPU is increased, suggesting that blending SBS with TPU is consistent with the compound rule. In addition, the SBS/TPU composites elastomer materials have better dynamic damping properties at high frequency.  相似文献   

11.
The influence of the ply stacking sequence on the impact resistance and subsequent O-tension fatigue performance of carbon fibre laminates has been investigated. Drop-weight impact tests were conducted on a range of 16 ply carbon fibre laminates with either all non-woven plies or mixtures of woven and non-woven plies. Damaged coupons were tested in O-tension fatigue for up to 106 cycles, scanned using an ultrasonic probe and then loaded in tension until failure.The impact resistance and subsequent fatigue performance have been found to be sensitive to the ply stacking sequence. The non-woven composites showed a marked sensitivity to impact loading, but increases in residual static strength were noted after cycling. The inclusion of a woven fabric served to improve the impact resistance of the laminates. Fatigue cycling resulted in considerably improved residual static strengths; by 106 cycles any effect of the impact damage had been removed.  相似文献   

12.
6种针刺工艺不同的碳纤维增强树脂基复合材料,其面内拉伸强度随着针刺密度和针刺深度的增大而降低,针刺处纤维的断裂使材料内的缺陷失稳扩展和面内纤维断裂,进而使材料整体拉伸失效。根据面内拉伸实验结果和纤维累计损伤理论并引入纤维体积折减系数,建立了分析针刺复合材料面内拉伸强度的理论模型。这个模型的预测结果与实验结果相符,并发现断裂纤维簇的个数与体积折减系数相关。用该模型可预报不同针刺工艺复合材料的面内拉伸强度,并指导设计针刺复合材料的预制体。  相似文献   

13.
By adding glass fibres to carbon fibre composites, the apparent failure strain of the carbon fibres can be increased. A strength model for unidirectional hybrid composites was developed under very local load sharing assumptions to study this hybrid effect. Firstly, it was shown that adding more glass fibres leads to higher hybrid effects. The hybrid effect was up to 32% for a hybrid composite with a 10/90 ratio of carbon/glass fibres. The development of clusters of broken fibres helped to explain differences in the performance of these hybrid composites. For 50/50 carbon/glass hybrids, a fine bundle-by-bundle dispersion led to a slightly smaller hybrid effect than for randomly dispersed hybrids. The highest hybrid effect for a 50/50 ratio, however, was 16% and was achieved in a composite with alternating single fibre layers. The results demonstrate that thin ply hybrids may have more potential for improved mechanical properties than comingled hybrids.  相似文献   

14.
This paper presents an experimental investigation of the mechanical response and the industrial manufacturability of CFRP–titanium hybrid laminates using the example of a spacecraft payload adaptor. The local hybridization with metal within a bolted joint region of composite laminates is proven to be an effective method of increasing the mechanical joint efficiency of highly loaded bolted joints. High-strength titanium foils are locally embedded into the composite laminate by means of ply substitution techniques, thus avoiding any local laminate thickening and providing for a local laminate with high bearing and shear capabilities. An extensive sample and component test program has been performed evaluating the impact of different design parameters and load conditions. The verification of the hybrid technique’s processability, inspectability and compatibility with a standard industrial fibre placement process has been successfully demonstrated through the manufacturing of a spacecraft payload adaptor featuring diverse applications of the hybridization technique.  相似文献   

15.
This study presents an experimental investigation into the effects of through-thickness pinning reinforcement on the static strength and damage tolerance of hybrid mild steel–glass fibre prepreg co-cured composite single lap joints (SLJ). Stainless steel pins of 0.3 mm in diameter were inserted as mechanical fastening, in addition to adhesive bonding, to form hybrid joints between metal and glass fibre reinforced polymer substrates. Using the hybrid SLJ tensile testing, the failure modes and static strength were experimentally determined for mild steel–glass fibre prepreg co-cured composites. It is revealed that pinning can improve the static failure load via bridging mechanism by as much as 58% depending on the number and location of pins and the presence of clamping due to bent-ends.  相似文献   

16.
PLA/hemp co-wrapped hybrid yarns were produced by wrapping PLA filaments around a core composed of a 400 twists/m and 25 tex hemp yarn (Cannabis sativa L) and 18 tex PLA filaments. The hemp content varied between 10 and 45 mass%, and the PLA wrapping density around the core was 150 and 250 turns/m. Composites were fabricated by compression moulding of 0/90 bidirectional prepregs, and characterised regarding porosity, mechanical strength and thermal properties by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). Mechanical tests showed that the tensile and flexural strengths of the composites markedly increased with the fibre content, reaching 59.3 and 124.2 MPa when reinforced with 45 mass% fibre, which is approximately 2 and 3.3 times higher compared to neat PLA. Impact strength of the composites decreased initially up to 10 mass% fibre; while higher fibre loading (up to 45 mass%) caused an increase in impact strength up to 26.3 kJ/m2, an improvement of about 2 times higher compared to neat PLA. The composites made from the hybrid yarn with a wrapping density of 250 turns/m showed improvements in mechanical properties, due to the lower porosity. The fractured surfaces were investigated by scanning electron microscopy to study the fibre/matrix interface.  相似文献   

17.
This paper summarizes an extensive experimental study of composites reinforced with three-dimensional woven preforms subjected to tensile, compressive and in-plane shear loading. Three innovative three-dimensional woven architectures were examined that utilize large 12 K and 24 K IM7 carbon tows, including two ply to ply angle interlock architectures and one orthogonal architecture. Additionally, a two-dimensional quasi-isotropic woven material was evaluated for comparison. Loads were applied in both the warp and the weft directions for tensile and compressive loading. Digital image correlation was used to investigate full field strains leading up to quasi-static failure. Experimental results including ultimate strengths and moduli are analyzed alongside representative failure modes. The orthogonal woven material was found to have both greater strength and modulus in tension and compression, though a ply to ply woven architecture was found to outperform the remaining three-dimensional architectures. Recommendations are made for improving the manufacturing processes of certain three-dimensional woven architectures.  相似文献   

18.
Acrylonitrile–butadiene–styrene (ABS)/ethylene–propylene–diene monomer (EPDM) composites reinforced with graphene nanoplatelets (GN) were fabricated by the direct melt blending, dried premixing and wet premixing process, respectively. The electrical resistivity, tensile strength, impact strength, microstructure, thermal stability, glass transition temperature and morphology of fracture surface of composites were investigated. In case of direct melt blending process, the maximum tensile strength with minimum impact strength is obtained. But this result is reversed while the fabrication of composites by wet premixing process. SEM results show that GN is prior to distributing in the continuous ABS phase. The percolation threshold could be significantly decreased from 11.8 wt% to 6.6 wt% when prepare composites by wet/dried premixing process instead of melt blending.  相似文献   

19.
采用自行合成的热致性液晶聚合物(TLCP)与酚醛树脂(PF)通过熔融挤出进行原位复合,加入经过表面处理的剑麻纤维(SF),通过辊炼、模压成型制备了TLCP/SF/PF混杂复合材料。研究液晶聚合物的种类对TLCP/SF/PF混杂复合材料摩擦磨损性能、硬度、动态力学性能的影响,使用扫描电子显微镜(SEM)观察了混杂复合材料的磨损面形貌,分析了混杂复合材料的摩擦磨损机理。研究结果表明,液晶聚合物聚对苯二甲酰-双(对羟基苯甲酸)癸二醇酯(PHDT)使TLCP/SF/PF的体积磨损率降低了15%,Tg提高了10℃。TLCP与剑麻纤维协同改善了混杂复合材料的摩擦性能,为制备无石棉摩擦材料提供理论参考。  相似文献   

20.
反应熔体渗透C/SiC复合材料的摩擦性能   总被引:4,自引:0,他引:4  
以不同结构类型及密度的C/C复合材料为预制体,采用反应熔体渗透法制备了C/SiC复合材料,研究了不同结构C/SiC复合材料的密度、组分含量、热扩散系数与摩擦性能相互之间的关系.结果表明随着碳含量的降低,复合材料的密度增加;短切纤维C/SiC、低密度针刺C/SiC与高密度针刺C/SiC复合材料的平均摩擦系数分别为:0.28,0.28与0.42;随着热扩散系数的增加,复合材料的摩擦稳定性系数升高;并且对于短切纤维C/SiC,摩擦实验后基本形成了连续光亮的摩擦面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号