首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Er-doped ZnO nanosheets with high quality were synthesized by the hydrothermal and post-annealing techniques, and the effect of erbium dopant on the structures, morphologies and photoluminescence properties of the as-synthesized samples were determined using XRD, SEM, TEM, EDS, PL and Raman spectroscopy. The results showed that Er3+ ions were successfully incorporated into the crystal lattice of ZnO host, and some irregular porous microstructure with diameter of 3–10 nm could be seen on ZnO nanosheets as various doping concentrations. It was found that the crystallization and photoluminescence properties of ZnO nanosheets were strongly influenced by erbium doping concentration. The ultraviolet emission and deep level emission were both appeared in PL spectra, and the intensity of the whole deep level emission was enhanced with erbium doping, indicating the deep-level-defect luminescent centers were increased in the doped samples. Moreover, the crystallization of the samples became worse due to more defects by erbium doping.  相似文献   

2.
ZnO nanocrystals doped with trivalent europium ions (Eu3+) and dysprosium ions (Dy3+) were synthesized by the pre- cipitation method. The structural and optical properties of the samples are investigated by the X-ray diffraction (XRD) and photoluminescence (PL). The results show that rare earth ions are incorporated into the lattice of ZnO, and the combination of blue, green and red emissions can be obtained. Specially, the emission can be obtained even under the nonresonant excitation of 320 nm, which is explained based on the energy transfer. The concentration quenching mechanism is also presented in this paper.  相似文献   

3.
Cubic boron-nitride micropowder with Eu3+ ions (cBN:Eu) is synthesized under conditions of high pressures and temperatures. The structural, morphological, chemical, and optical characteristics of the cBN:Eu micropowder are studied using X-ray diffraction, energy-dispersive X-ray spectral microanalysis, photoluminescence, and optical transmission methods. It is found that the cBN:Eu lattice parameter is ~3.615 Å. The intense red luminescence of the cBN:Eu micropowder (red glow), measured in the visible region of the spectrum in the range from 550 to 750 nm, is attributed to intracenter 4f-electron transitions of the Eu3+ ions. The possible nature of the cBN:Eu micropowder luminescence is discussed.  相似文献   

4.
Thin films of Zinc Oxide were deposited by the sol-gel technique on glass substrates. The films were doped with Al, Mg or co-doped with both by introduction of appropriate compounds in the solution before dip-coating and annealing in air at 500 °C. Energy Dispersive X-Ray Spectroscopy was employed to measure the dopant incorporation. X-ray diffraction studies indicate that Mg doping increases grain size, while Al doping reduces it. Photoluminescence (PL) measurements indicate that undoped and Al-doped films show, along with a broad near band-edge (NBE) peak, additional peaks at longer wavelengths related to various defect states. However Mg doped films show only a sharp NBE peak, which is blue shifted compared to undoped ZnO, and there are no prominent sub band gap luminescence peaks. This is also the case for Mg and Al co-doped ZnO samples, provided the Mg content is low. Photocurrent measurements were carried out using silver contacts using a De source under atmospheric conditions. Undoped and Mg doped ZnO films showed high resistances and low photocurrent levels. With low Al doping, both the dark current and the photocurrent increase significantly, but the films show very long photocurrent transients. With optimized concentration of Mg/Al co-doping in ZnO, the photocurrent increased by ~98 times compared to ZnO films doped only with Mg. Simultaneously, the photocurrent transients became ~44 times faster than ZnO films doped only with Al.  相似文献   

5.
The influence of polyvinylpyrrolidone (PVP) and monoethanolamine (MEA) as surfactants on photoluminescence (PL) of Eu-doped ZnO (ZnO:Eu) has been studied. X-ray diffraction (XRD) results show that there are more Eu3+ ions to replace Zn2+ ions into ZnO lattice for ZnO:Eu in the presence of surfactant MEA. From the spectral analysis for ZnO:Eu with different surfactants by Gaussian deconvolution, it can be seen that the use of MEA as a surfactant affects the energy transfer from ZnO host to Eu3+ ions and leads to three new emission peaks, including UV emission (389 nm), violet emission (411 nm) and green emission (506 nm).  相似文献   

6.
Thin films of Al-doped ZnO (AZO) and (Al, K)-co-doped ZnO (AKZO) were synthesized by sol–gel spin coating and their structural and optical properties were investigated. All the films had a preferential orientation in which the c-axis was perpendicular to the substrate. The optical bandgap increased after Al doping, but decreased after K doping at a given Al doping concentration. UV emission and a broad visible emission band were observed in photoluminescence (PL) spectra. The intensity of both emission bands decreased after Al and K co-doping. PL excitation (PLE) spectra of the blue emission band indicate that the initial state is possibly the same for all the samples and a similar case occurs for the orange–red emission band. The green emission can be attributed to electronic transitions involving oxygen vacancies. A possible process for the orange–red emission of the thin films is radiative recombination of an electron trapped in a zinc interstitial defect with a hole deeply trapped in interstitial oxygen.  相似文献   

7.
利用溶胶-凝胶(sol-gel)法在玻璃和硅衬底上制备了不同Sn掺杂量的Sn-Al共掺的ZnO薄膜。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外可见分光光度计(UV-Vis)、光致发光谱(PL)等测试手段,对薄膜的结构、形貌和光学性能进行了表征。结果表明:所制备的样品晶粒均沿(002)方向择优生长,且随着Sn元素掺杂量的增加,择优取向性先增强后减弱,同时薄膜的半高宽先减小后增大,半高宽最小时,薄膜的结晶质量最好。与只掺Al元素的ZnO薄膜相比,共掺后的薄膜近紫外发光峰的强度明显降低,出现了轻微的蓝移,且在600 nm处的缺陷发光强度明显增强;随着Sn掺杂量的增加薄膜的透过率先增加后减小。与AZO薄膜相比,当Sn的掺杂量为0.020时,薄膜的结晶质量更好,缺陷发光更强,光透过率更高。  相似文献   

8.
Pure ZnO and Co-doped ZnO films have been deposited on coverslip substrates by sol–gel spin coating. The morphological, structural, and optical properties of the films were investigated. The microstructure of the ZnO films became increasingly fine and the crystalline size decreased with Co doping. Analysis of x-ray diffraction (XRD) and Raman spectra reveals that Co2+ ions are substituted for Zn2+ ions in the ZnO lattice without changing its wurtzite structure. Co doping induces a decrease of the band-gap energy and fluorescence quenching of the emission bands. The spectra related to transitions within the tetrahedral Co2+ ions in the ZnO host crystal were observed in absorption and luminescence spectra. Photoluminescence (PL) spectra under different excitation energies and PL excitation spectra for the visible emissions suggest that the orange–red emission and green emission could be related to interstitial zinc (Zni) shallow donors and oxygen vacancy (V O) deep donors, respectively. The red emission of Co-doped ZnO film could be assigned to the radiative transitions within the tetrahedral Co2+ ions in the ZnO host crystal after band-to-band excitation. A consistent explanation for the pure and Co-doped ZnO films is that the red emission under the excitation energy below the band gap is probably associated with extended Zni states.  相似文献   

9.
Eu3+,Li+共掺杂ZnO薄膜结构与发光性质的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究Eu3+,Li+共掺杂的ZnO薄膜结构与发光性质,采用脉冲激光沉积方法在P型单晶Si(111)衬底上制备了Eu3+,Li+共掺杂的ZnO薄膜,其中,Eu3+作为发光中心,而Li+作为低价电荷的补偿离子和发光敏化剂。分别对样品进行了X射线衍射谱测试和光致发光谱分析。得出的数据中X射线衍射谱显示,Eu3+,Li+共掺杂的ZnO薄膜具有c轴择优取向,X射线衍射谱中除ZnO晶向以外没有出现其它结晶峰;Eu3+,Li+共掺杂的ZnO薄膜的光致发光谱与ZnO纯晶体薄膜的发射光谱基本相似,但是掺杂ZnO薄膜的紫外发光峰却出现红移现象,峰值位于382nm处,且发光峰也不尖锐。当以395nm的激发光照射样品时,在光致发光光谱中观察到了稀土Eu3+在594nm,613nm附近的特征发光峰。结果表明,掺杂元素Eu3+,Li+均已进入到ZnO晶格中,形成了以Eu3+为发光中心的ZnO纤锌矿结构。  相似文献   

10.
Al掺杂ZnO纳米棒的性能研究及其在太阳能电池中的应用   总被引:5,自引:5,他引:0  
通过水热法制备了不同质量分数(0%,0.5%,1.0%和1.5%)的Al 3+掺杂ZnO纳米棒,扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见(UV-vis)吸收光谱等测试结果表明,通过这种方法得到了较为规整的ZnO纳米阵列,结晶良好、具有明显的c轴生长取向;掺杂浓度的增加对产物的形貌和晶体结构产生了明显的影响。通过瞬态光谱和面电阻测试发现,Al 3+掺杂提高了ZnO传导电子的能力。将Al 3+掺杂的ZnO纳米棒同时作为电极与电子传输层,应用于有机太阳能电池器件中,在低浓度(0.5at.%)掺杂时得到最佳的器件性能,相比于未掺杂的ZnO纳米棒,短路电流提高了30%,光电转化效率提高了50%。  相似文献   

11.
以醋酸锌(Zn(CH3COO)2)、氯化铕(EuCl3)水溶液为前驱体,采用超声喷雾热解(USP)方法在ITO导电玻璃衬底上沉积Eu掺杂ZnO(ZnO:Eu)薄膜。通过扫描电镜(SEM)、X射线衍射(XRD)和光致发光(PL)谱对ZnO:Eu薄膜的形貌、结构和光学性质进行了研究。SEM测试结果表明,超声喷雾热解法制备的...  相似文献   

12.
Nanotrees ZnO films are synthesized by thermal evaporation method on silicon and glass substrates. PbS powder (5 wt%) is used to obtain the nanostructure and growth modifications. ZnO films are compared with non-doped ones (ZnO film was dense structure without nanotrees). The deposited PbS:ZnO films exhibit polycrystalline orientation using X-ray diffraction (XRD), but the films without doping was less crystalline quality. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology. SEM images (surface and cross section) was confirmed the nanotrees form for doped ZnO film. Energy dispersive X-ray detector (EDX) was used to verify the composition of prepared films. Ultraviolet-visible (UV-Vis), photoluminescence (PL) and micro Raman techniques were used to investigate the optical properties. The PL spectra intensities were found to increase for PbS:ZnO nanotrees. Up to our knowledge, no work has been published regarding the obtained ZnO nanotrees using PbS as dopant via simple thermal evaporation method.  相似文献   

13.
采用溶胶—凝胶法在普通玻璃衬底上制备了ZAO(ZnO:A1)薄膜,利用XRD、SEM、紫外—可见光谱和光致发光光谱对所制备的AZO薄膜进行了表征,研究了ZAO薄膜的结构和光学性能.结果表明:ZAO薄膜的微晶晶相与ZnO一致,且具有c轴择优取向;ZAO薄膜在可见光区的透过率超过了88%,在350~575 nm范围内有强的...  相似文献   

14.
Europium oxide (Eu2O3) is coated on zinc (Zn) wire using the electrophoretic deposition process. The coated Zn wire is subjected to the wire explosion process (WEP) which is rapid (< 15 min), and chimie douce (soft chemical, low temperature), in nature; this results in the formation of Eu doped ZnO. The explosion chamber contains oxygen (99.9%) at atmospheric pressure. Electron micrographs indicate that the particle sizes are ~ 80 nm. Diffractogram-based analysis suggests that the crystallite size is ~ 18–20 nm in the as-prepared doped ZnO nanoparticles. Electron paramagnetic resonance shows the presence of Zn vacancies and the cryo-photoluminescence spectrum indicates that Eu exists in the + 3 state. A combined Williamson–Hall plot and Kisielowski’s model based analysis indicates that Eu is a substitutional dopant in WEP derived Eu:ZnO particles. It is estimated that this material has ~ 0.24 at.% doping. This analysis also shows that, unlike another popular material GaN, in the case of ZnO, Eu3+ strictly substitutes for Zn2+ (i.e., dopant replacing a cation–anion pair does not seem possible). It may be noted that Eu3+ in a suitable host is oftentimes reported to be an efficient luminophore. The IR spectra show a band shift from 486 cm?1 to 493 cm?1; with peak shifts from 436 cm?1 to 430 cm?1 in Raman spectra. These too indicate the presence of Eu in the samples. However, at room temperature, only green luminescence (centered at 534 nm) is observed from the sample indicating (1) high concentrations of OZn anti-site defects and Zn vacancies, and (2) concomitant quenching of the luminescence at room temperature. Our results suggest that WEP is viable for synthesizing rare earth doped ceramic materials. However, obtaining efficient phosphors using this approach will likely require, (1) reduction of defect densities, and (2) appropriate passivation using post-processing.  相似文献   

15.
利用霍尔效应、电流-电压(I-V)、光致发光谱(PL)和光电流谱(PC)研究了不同掺铁浓度的半绝缘InP的性质.半绝缘InP的I-V特性明显地依赖于掺铁的浓度.掺铁的浓度也对半绝缘InP的光学性质和材料中缺陷的形成有影响.用PL和PC分别研究了掺铁半绝缘InP的禁带收缩现象和材料中的缺陷.  相似文献   

16.
掺铁浓度对半绝缘磷化铟的一些性质的影响   总被引:1,自引:0,他引:1  
利用霍尔效应、电流-电压(I-V)、光致发光谱(PL)和光电流谱(PC)研究了不同掺铁浓度的半绝缘InP的性质.半绝缘InP的I-V特性明显地依赖于掺铁的浓度.掺铁的浓度也对半绝缘InP的光学性质和材料中缺陷的形成有影响.用PL和PC分别研究了掺铁半绝缘InP的禁带收缩现象和材料中的缺陷.  相似文献   

17.
Semiconductor nanoparticles doped with transition metal ions can influence the transition probabilities and electronic structure. The undoped and copper doped zinc sulphide nanoparticles with various concentrations are synthesized by wet chemical co-precipitation method. These nanoparticles are characterized by using X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), UV–visible (UV–vis) absorption spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, conductivity measurement and time-resolved photoluminescence studies. X-ray powder diffraction analysis reveals that the synthesized samples have cubic zinc blende structure. The Scanning Electron Microscope shows the synthesized nanoparticles are agglomerated. The UV–visible spectra reveal the absorption edge is red shifted. The FT-IR spectra show vibrational peaks around 617 cm−1 which indicate the presence of Cu–S stretching modes. The AC conductivity measurement confirms the semiconducting nature and shows a marked increase in conductivity as the doping concentration of copper increases. The photoluminescence shows that the emission at 426 nm may be due to transition from the conduction band to the zinc vacancies. These transition metal ions doped semiconductor nanoparticles have important applications in solid state lighting, imaging, and other photonic devices.  相似文献   

18.
A series of Zn1−xMgxO nanoparticles with x=0 to 0.15 were prepared by auto combustion method using citric acid as the fuel and chelating agent. Structure, luminescence and photocatalytic properties were systematically investigated by means of X-ray diffraction, scanning electron microscopy, photoluminescence spectra, ultraviolet–visible absorbance measurement and photochemical reactions etc. The samples retained hexagonal wurtzite structure of ZnO and single phase below x=0.13, and the sizes of the nanoparticles were 60–70 nm. The photoluminescence spectroscopy demonstrated blue shift of ultraviolet emission with increasing Mg doping concentration. Both optical measurements of the as grown and Mg doped ZnO nanoparticles showed that the optical band gap could be modified from ~3.28 eV to 3.56 eV as the Mg content x increased from 0 to 0.13. The photocatalytic activities of the samples were evaluated by photocatalytic degradation of methyl orange, and the results showed that the doping of Mg into ZnO nanoparticles could enhance photocatalytic activity compared to the undoped ZnO nanoparticles, which was attributed to increased band gap and superior textural properties. In addition, according to the PL and photocatalytic studies, the critical doping content of effective Mg in ZnO is up to 0.09.  相似文献   

19.
赵斌  唐立丹  王冰 《压电与声光》2017,39(2):256-259
采用脉冲电磁场辅助水热合成法制备了高比表面积、高能面暴露的ZnO纳米片阵列,通过场发射扫描电镜(FESEM)、X线衍射(XRD)及X线光电子能谱(XPS)等手段测试纳米结构阵列的性能。结果表明,经过Al掺杂后的ZnO纳米结构由棒状转变为六边形的片状结构,当Al的摩尔分数为1%时,纳米片彼此交错,组织均匀,垂直于衬底,与传统纳米棒相比,纳米片具有更大的比表面积及更多暴露的高能晶面,并对纳米棒向纳米片的转变机理进行了详细的分析和探讨。  相似文献   

20.
The present paper deals with the effect of europium (Eu3+) doping concentration (0.1–2.5 mol%) on photoluminescence (PL) and thermoluminescence (TL) of strontium yttrium oxide (SrY2O4) phosphor. The sample was prepared by the modified solid state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized by using X-ray Diffraction (XRD), field emission gun scanning electron microscopy, fourier transform infrared spectroscopy, high resolution transmission electron microscopy, photoluminescence, thermoluminescence and commission internationale de I׳Eclairage techniques. The PL emission was observed in the range of 410–630 nm for the SrY2O4 phosphor doped with Eu3+. Excitation spectrum was found at 254 and 325 nm, sharp peaks were found around 593, 615 and 625 nm with high intensity. From the XRD data, using Scherrer׳s formula, calculated average crystallite size of Eu3+ doped SrY2O4 phosphor is around 32 nm. Thermoluminescence study was carried out for the phosphor with UV and gamma irradiation. The TL response of SrY2O4:Eu3+ phosphor for two different radiations was compared and studied in detail. The present phosphor can act as a single host for white light emission in display devices. The detailed process and possible mechanisms for PL and TL are studied and discussed. For the variable concentration of Eu3+ on PL studies the PL intensity increases with increasing the concentration of dopant and the concentration quenching found after 2 mol% of Eu3+ the optimized concentration was 2 mol%, which is suitable for the display device application. In TL glow curve the optimized concentration was 1 mol% for the UV irradiated sample and 0.2 mol% of Eu3+ for the gamma irradiated sample and beta irradiated sample for 10 Gy dose. The kinetic parameters were calculated by the computerized glow curve deconvolution (CGCD) technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号