首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain-hardening UHP-FRC with low fiber contents   总被引:4,自引:1,他引:3  
This research work focuses on the optimization of strength and ductility of ultra high performance fiber reinforced concretes (UHP-FRC) under direct tensile loading. An ultra high performance concrete (UHPC) with a compressive strength of 200 MPa (29 ksi) providing high bond strength between fiber and matrix was developed. In addition to the high strength smooth steel fibers, currently used for typical UHP-FRC, high strength deformed steel fibers were used in this study to enhance the mechanical bond and ductility. The study first shows that, with appropriate high strength steel fibers, a fiber volume fraction of 1% is sufficient to trigger strain hardening behavior accompanied by multiple cracking, a characteristic essential to achieve high ductility. By improving both the matrix and fiber parameters, an UHP-FRC with only 1.5% deformed steel fibers by volume resulted in an average tensile strength of 13 MPa (1.9 ksi) and a maximum post-cracking strain of 0.6%.  相似文献   

2.
Direct tensile behavior of high performance fiber reinforced cementitious composites (HPFRCCs) at high strain rates between 10 s−1 and 30 s−1 was investigated using strain energy frame impact machine (SEFIM) built by authors. Six series of HPFRCC combining three variables including two types of fiber, hooked (H) and twisted (T) steel fiber, two fiber volume contents, 1% and 1.5%, and two matrix strengths, 56 MPa and 81 MPa, were investigated. The influence of these three variables on the high strain rate effects on the direct tensile behavior of HPFRCCs was analyzed based on the test results. All series of HPFRCCs showed strongly sensitive tensile behavior at high strain rates, i.e., much higher post cracking strength, strain capacity, and energy absorption capacity at high strain rates than at static rate. However, the enhancement was different according to the types of fiber, fiber volume content and matrix strength: HPFRCCs with T-fibers produced higher impact resistance than those with H-fibers; and matrix strength was more influential, than fiber contents, for the high strain rate sensitivity. In addition, an attempt to predict the dynamic increase factor (DIF) of post cracking strength for HPFRCCs considering the influences of fiber type and matrix strength was made.  相似文献   

3.
Enhanced matrix packing density and tailored fiber-to-matrix interface bond properties have led to the recent development of ultra-high performance fiber reinforced concrete (UHP-FRC) with improved material tensile performance in terms of strength, ductility and energy absorption capacity. The objective of this research is to experimentally investigate and analyze the uniaxial tensile behavior of UHP-FRC under various strain rates, ranging from 0.0001 to 0.1 1/s. A direct tensile test set up is used. The experimental parameters encompass three types of steel fibers, each in three different volume fractions at four different strain rates resulting in 36 test series. Elastic and strain hardening tensile parameters, such as, cracking stress, elastic and strain hardening modulus, composite tensile strength and strain, energy absorption capacity, and crack spacing of the UHP-FRC specimens, are recorded and analyzed. Explanation of the material’s strain rate sensitivity is mainly based on the inertia effect of matrix micro cracking. Potential contributions of other mechanisms include viscosity of water within nanopores and confinement effects. Dynamic impact factor (DIF) formulas are provided based on the experimental data to illustrate the relationship between DIF and strain rate for UHP-FRC.  相似文献   

4.
The results of an experimental investigation of UHP-FRC tensile response under a range of low strain rates are presented. The strain rate dependent tests are conducted on dogbone specimens using a hydraulic servo-controlled testing machine. The experimental variables are strain rate, which ranges from 0.0001 1/s to 0.1 1/s, fiber type, and fiber volume fraction. Five different types of fibers are considered including straight and twisted fibers with different geometric properties. The rate sensitivity of the composite material in tension is evaluated in terms of its first cracking strength, post-cracking strength, energy absorption capacity, strain capacity, elastic modulus, fiber tensile stress and number of cracks. The test results show pronounced rate effects on post-cracking strength and energy absorption capacity. Further, post cracking strength varies linearly with the fiber reinforcing index and energy absorption capacity varies linearly with the product of the fiber length and the reinforcing index, as predicted from the theory for fiber reinforced concrete.  相似文献   

5.
Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to standard SMC with less than 30% weight fiber content. During crash events, structural parts are heavily exposed to high rates of loading and straining. This work is concerned with the development of an advanced experimental approach devoted to the micro and macroscopic characterization of A-SMC mechanical behavior under high-speed tension. High speed tensile tests are achieved using servo-hydraulic test equipment in order to get required high strain rates up to 100 s−1. Local deformation is measured through a contactless technique using a high speed camera. Numerical computations have led to an optimal design of the specimen geometry and the experimental damping systems have been optimized in terms of thickness and material properties. These simulations were achieved using ABAQUS explicit finite element code. The developed experimental methodology is applied for two types of A-SMC: Randomly Oriented (RO) and Highly Oriented (HO) plates. In the case of HO samples, two tensile directions were chosen: HO-0° (parallel to the Mold Flow Direction (MFD)) and HO-90° (perpendicular to the MFD). High speed tensile tests results show that A-SMC behavior is strongly strain-rate dependent although the Young's modulus remains constant with increasing strain rate. In the case of HO-0°, the stress damage threshold is shown an increase of 63%, when the strain rate varies from quasi-static (0.001 s−1) to 100 s−1. The experimental methodology was coupled to microscopic observations using SEM. Damage mechanisms investigation of HO and RO specimens showed a competition between two mechanisms: fiber-matrix interface debonding and pseudo-delamination between neighboring bundles of fibers. It is shown that pseudo-delamination cannot be neglected. In fact, this mechanism can greatly participate to energy absorption during crash. Moreover, the influence of fiber orientation and imposed velocity is studied. It is shown that high strain rate and oriented fiber in the tensile direction favor the pseudo-delamination.  相似文献   

6.
This paper reports the high-strain rate properties of 3-D braided basalt/epoxy composite materials at 26 °C, −50 °C, −100 °C and −140 °C with strain-rate range from 1300 s−1 to 2100 s−1 by experimental study. A simple and effective cryogenic device was applied to the SHPB system to create the low-temperature field of the samples. It was found that the compression modulus, peak stress, failure strain and specific energy absorption of the 3-D braided basalt/epoxy composite materials had different sensitivity to temperatures and strain rates. In the out-of-plane impact, there were two failure modes, namely, compression-failure mode and shear-failure mode. Fracture of fiber tows was irregular with abundant pull-out of fiber and much finely-divided fragmentation of resin among fibers at room temperature. In cryogenic field, the fracture of fiber tows was neat and tidy with few pull-out of fiber and few finely-divided fragmentation of resin. However, in the in-plane impact, there was only compression failure mode. And there was no fracture of fiber tows and no big difference among samples tested under different gas pressures. Because of the function of squeezing and buckling, split-off separation of the composite could be blocked by the tangled fiber tows. As a whole, the reinforcement could still keep its structural integrity.  相似文献   

7.
Ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHP-FRC) were introduced in the mid 1990s. Special treatment, such as heat curing, pressure and/or extensive vibration, is often required in order to achieve compressive strengths in excess of 150 MPa (22 ksi). This study focuses on the development of UHP-FRCs without any special treatment and utilizing materials that are commercially available on the US market. Enhanced performance was accomplished by optimizing the packing density of the cementitious matrix, using very high strength steel fibers, tailoring the geometry of the fibers and optimizing the matrix-fiber interface properties. It is shown that addition of 1.5% deformed fibers by volume results in a direct tensile strength of 13 MPa, which is 60% higher than comparable UHP-FRC with smooth steel fibers, and a tensile strain at peak stress of 0.6%, which is about three times that for UHP-FRC with smooth fibers. Compressive strength up to 292 MPa (42 ksi), tensile strength up to 37 MPa (5.4 ksi) and strain at peak stress up to 1.1% were also attained 28 days after casting by using up to 8% volume fraction of high strength steel fibers and infiltrating them with the UHPC matrix.  相似文献   

8.
In this paper single fiber pull-out performance of high strength steel fibers embedded in ultra-high performance concrete (UHPC) is investigated. The research emphasis is placed on the experimental performance at various pullout rates to better understand the dynamic tensile behavior of ultra-high performance fiber reinforced concrete (UHP-FRC). Based on the knowledge that crack formation is strain rate sensitive, it is hypothesized that the formation of micro-splitting cracks and the damage of cement-based matrix in the fiber tunnel are mainly attributing to the rate sensitivity. Hereby, different pull-out mechanisms of straight and mechanically bonded fibers will be examined more closely. The experimental investigation considers four types of high strength steel fibers as follows: straight smooth brass-coated with a diameter of 0.2 mm and 0.38 mm, half end hooked with a diameter of 0.38 mm and twisted fibers with an equivalent diameter of 0.3 mm. Four different pull out loading rates were applied ranging from 0.025 mm/s to 25 mm/s. The loading rate effects on maximum fiber tensile stress, use of material, pullout energy, equivalent bond strength, and average bond strength are characterized and analyzed. The test results indicate that half-hooked fibers exhibit highest loading rate sensitivity of all fibers used in this research, which might be attributed to potential matrix split cracking. Furthermore, the effect of fiber embedment angles on the loading rate sensitivity of fiber pullout behavior is investigated. Three fiber embedment angles, 0°, 20°, and 45°, are considered. The results reveal that there is a correlation between fiber embedment angle and loading rate sensitivity of fiber pullout behavior.  相似文献   

9.
This study investigated the synergistic tensile response of blending 1% long and 0.5% short steel fibers in ultra-high-performance concrete (UHPC) at high strain rates of 16–37 s−1. Three ultra-high-performance hybrid-fiber-reinforced concretes (UHP-HFRCs) containing twisted, hooked, or smooth long (30 mm) fibers blended with short (13 mm) smooth fibers, as well as one sample (LS10MS05) blending long and medium (19 mm) smooth fibers, were examined. The blending of long and shorter steel fibers in UHPC generated high synergy in the tensile responses of the UHP-HFRCs, especially at high strain rates. Synergies were significant for strain capacity and peak toughness, but not for post-cracking strength and softening fracture energy. Among the long fibers, the hooked fibers generated the highest synergy at high strain rates, but smooth fibers produced the highest rate sensitivity in UHPC. Consequently, the LS10MS05 sample demonstrated the highest tensile resistance at high strain rates.  相似文献   

10.
The critical strain energy release rate for the solder joint fracture was measured as a function of the strain rate and the mode ratio of loading. These data are useful in predicting the fracture of solder joints loaded under arbitrary combinations of tension and shear during the impact conditions typical of falling portable electronic devices. In this study, strain rates from quasi-static (close to 0 s 1) to 61 s 1 were investigated at phase angles from 0 to 60°, typical of the range found in microelectronic devices. Copper–solder–copper double cantilever beam (DCB) model specimens were prepared using SAC305 solder at cooling rates and times above liquidus typical of actual ball grid arrays (BGAs). A drop tester was designed and built to achieve different strain rates at various mode ratios. The critical initiation strain energy release rate, Jci, increased about 70% from quasi-static to intermediate strain rates, before decreasing by more than 67% from intermediate strain rates to 42 s 1.  相似文献   

11.
We investigate dynamic fracture of three types of multiwalled carbon nanotube (MWCNT)/epoxy composites and neat epoxy under high strain-rate loading (105106 s−1). The composites include randomly dispersed, 1 wt%, functionalized and pristine CNT/epoxy composites, as well as laminated, ∼50 wt% CNT buckypaper/epoxy composites. The pristine and functionalized CNT composites demonstrate spall strength and fracture toughness slightly higher and lower than that of neat epoxy, respectively, and the spall strength of laminated CNT buckypaper/epoxy composites is considerably lower; both types of CNTs reduce the extent of damage. Pullout, sliding and immediate fracture modes are observed; the fracture mechanisms depend on the CNT–epoxy interface strength and fiber strength, and other microstructures such as the interface between CNT laminates. Compared to the functionalized CNT composites, weaker CNT–epoxy interface strength and higher fiber strength lead to a higher probability of sliding fracture and higher tensile strength in the pristine CNT composites at high strain rates. On the contrary, sliding fracture is more pronounced in the functionalized CNT composites under quasistatic loading, a manifestation of a loading-rate effect on fracture modes. Despite their helpful sliding fracture mode and large CNT content, the weak laminate–laminate interfaces play a detrimental role in fracture of the laminated CNT buckypaper/epoxy composites. Regardless of materials, increasing strain rates leads to pronounced rise in tensile strength and fracture toughness.  相似文献   

12.
The mechanical behavior and the deformation and failure micromechanisms of a thermally-bonded polypropylene nonwoven fabric were studied as a function of temperature and strain rate. Mechanical tests were carried out from 248 K (below the glass transition temperature) up to 383 K at strain rates in the range ≈10−3 s−1 to 10−1 s−1. In addition, individual fibers extracted from the nonwoven fabric were tested under the same conditions. Micromechanisms of deformation and failure at the fiber level were ascertained by means of mechanical tests within the scanning electron microscope while the strain distribution at the macroscopic level upon loading was determined by means of digital image correlation. It was found that the nonwoven behavior was mainly controlled by the properties of the fibers and of the interfiber bonds. Fiber properties determined the nonlinear behavior before the peak load while the interfiber bonds controlled the localization of damage after the peak load. The influence of these properties on the strength, ductility and energy absorbed during deformation is discussed from the experimental observations.  相似文献   

13.
The flying wedge is a dynamic tensile testing facility which is capable of generating strain rates from around 102 s−1 up to in excess of 104 s−1. While the wedge concept was originally conceived as stop-gap method of making use of an existing facility, it was recognised that such an arrangement offered the advantage of simultaneously applied, true tensile loading at both ends of a test piece. The device has provided a valuable facility for conducting tests to explore the effects of strain rate, state-of-stress and temperature on the deformation and fracture of ductile materials and for the validation of DYNA codes for use in this area.  相似文献   

14.
As the lightest metal material, magnesium alloy is widely used in the automobile and aviation industries. Due to the crashing of the automobile is a process of complicated and highly nonlinear deformation. The material deformation behavior has changed significantly compared with quasi-static, so the deformation characteristic of magnesium alloy material under the high strain rate has great significance in the automobile industry. In this paper, the tensile deformation behavior of AZ31B magnesium alloy is studied over a large range of the strain rates, from 700 s−1 to 3 × 103 s−1 and at different temperatures from 20 to 250 °C through a Split-Hopkinson Tensile Bar (SHTB) with heating equipment. Compared with the quasi-static tension, the tensile strength and fracture elongation under high strain rates is larger at room temperature, but when at the high strain rates, fracture elongation reduces with the increasing of the strain rate at room temperature, the adiabatic temperature rising can enhance the material plasticity. The morphology of fracture surfaces over wide range of strain rates and temperatures are observed by Scanning Electron Microscopy (SEM). The fracture appearance analysis indicates that the fracture pattern of AZ31B in the quasi-static tensile tests at room temperature is mainly quasi-cleavage pattern. However, the fracture morphology of AZ31B under high strain rates and high temperatures is mainly composed of the dimple pattern, which indicates ductile fracture pattern. The fracture mode is a transition from quasi-cleavage fracture to ductile fracture with the increasing of temperature, the reason for this phenomenon might be the softening effect under the high strain rates.  相似文献   

15.
Tensile behaviour of FRC under high strain-rate   总被引:1,自引:1,他引:0  
This paper presents experimental results on two types of concrete reinforced with steel and polyvinyl-alcohol (PVA) fibres subjected to dynamic tensile loading. The tests were carried out by using a Modified Hopkinson Bar apparatus on fibre reinforced concrete notched-specimens under three different strain-rates (50, 100, and 200 s−1). From the experiments it was found that there is a significant enhancement in tensile strength with increasing strain-rates. The dynamic tests on steel FRC with the smaller loading rate (50 s−1) showed a strength similar to the one measured from static tests; however, for increasing loading rates, a remarkable decrease of post-peak strength and ductility occurs. In specimens with PVA fibres, an enhancement of the tensile strength was also observed and a significant reduction of fracture energy and ultimate deformation occurred. Some experimental aspects are also discussed as the specimen shape, its dimension, the loading rate as well as the different post-peak behaviour from static and dynamic tests.  相似文献   

16.
The crack propagation and damage evolution in metal (Ti6Al4V)-intermetallic (Al3Ti) laminate composites were investigated. The composites (volume fractions of Ti6Al4V: 14%, 20% and 35%) were tested under different loading directions (perpendicular and parallel directions to laminate plane), to different strains (1%, 2%, 3%) and at different strain rates (0.0001 and 800–2000 s−1). Crack densities and distributions were measured. The crack density increases with increasing strain, but decreases (at a constant strain) with increasing volume fraction of Ti6Al4V. Differences in crack propagation and damage evolution in MIL composites under quasi-static (10−4 s−1) and dynamic (800–2000 s−1) deformation were observed. The fracture stress does not exhibit significant strain-rate sensitivity; this is indicative of the dominance of microcracking processes in determining strength. Generally, the crack density after dynamic deformation is higher than that after quasi-static deformation. This is attributed to the decreased time for crack interaction in high-strain rate deformation. The effect of crack density, as quantified by a damage parameter, on elastic modulus and stress–strain relation were calculated and compared with experimental results.  相似文献   

17.
It is understood that small amount of nanoclay in the neat epoxy and fiber reinforced epoxy composite system improves the mechanical properties. The mechanical properties of most of polymer matrix composites are rate sensitive. Most of the researches have concentrated on the behavior of the polymer composites at high strain rates. The present research work is to study the effect of clay on neat epoxy and glass/epoxy composites, at low strain rates. The clay in terms of 1.5, 3 and 5 wt% are dispersed in the epoxy resin using mechanical stirrer followed by sonication process. The glass/epoxy nanocomposites are prepared by impregnating the glass fiber with epoxy–clay mixture by hand lay-up process followed by compression molding. Characterization of the nanoclay is done by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Tensile stress–strain curves are obtained at strain rates of 10−4, 10−3, 10−2 and 10−1 s−1 by a servo-hydraulic machine and the variation of modulus, strength and failure strain with strain rate are determined. The results show that, even at low strain rates, the longitudinal strength and stiffness increase as strain rate increases for all clay loadings. It is observed that the tensile modulus increases as the clay loading increases for both epoxy and glass/epoxy nanocomposites. Scanning electron microscopy is used to study the adhesion of composites in fracture surfaces.  相似文献   

18.
The hot tensile deformation behaviors of 42CrMo steel are studied by uniaxial tensile tests with the temperature range of 850–1100 °C and strain rate range of 0.1–0.0001 s−1. The effects of hot forming process parameters (strain rate and deformation temperature) on the elongation to fracture, strain rate sensitivity and fracture characteristics are analyzed. The constitutive equation is established to predict the peak stress under elevated temperatures. It is found that the flow stress firstly increases to a peak value and then decreases, showing a dynamic flow softening. This is mainly attributed to the dynamic recrystallization and material damage during the hot tensile deformation. The deformation temperature corresponding to the maximum elongation to fracture increases with the increase of strain rate within the studied strain rate range. Under the strain rate range of 0.1–0.001 s−1, the localized necking causes the final fracture of specimens. While when the strain rate is 0.0001 s−1, the gage segment of specimens maintains the uniform macroscopic deformation. The damage degree induced by cavities becomes more and more serious with the increase of the deformation temperature. Additionally, the peak stresses predicted by the proposed model well agree with the measured results.  相似文献   

19.
Enhanced matrix packing density and tailored fiber-to-matrix interface bond properties have led to the recent development of ultra-high performance fiber reinforced concrete (UHP-FRC) with improved material tensile performance in terms of strength, ductility and energy absorption capacity. The objective of this research is to experimentally investigate and analyze the uniaxial tensile behavior of the new material. The paper reviews and categorizes a variety of tensile test setups used by other researchers and presents a revised tensile set up tailored to obtain reliable results with minimal preparation effort. The experimental investigation considers three types of steel fibers, each in three different volume fractions. Elastic, strain hardening and softening tensile parameters, such as first cracking stress and strain, elastic and strain hardening modulus, composite strength and energy dissipation capacity, of the UHP-FRCs are characterized, analyzed and linked to the crack pattern observed by microscopic analysis. Models are proposed for representing the tensile stress–strain response of the material.  相似文献   

20.
High-Performance Fiber-Reinforced Cementitious Composite (HPFRCC) materials exhibit strain hardening in uniaxial, monotonic tension accompanied by multiple cracking. The durability of HPFRCC materials under repeated loading makes them potentially suitable for seismic design applications. In this paper, the strain rate dependence of tensile properties of two HPFRCC materials in cylindrical specimens is reported from a larger study on strain rate effects in tension, compression and cyclic tension–compression loading. The cylindrical specimens were loaded in monotonic tension at strain rates ranging from quasi-static to 0.2 s−1. To evaluate the impact of specimen geometry on tensile response, coupon specimens loaded in monotonic tension under a quasi-static strain rate were compared to corresponding cylindrical specimens made from the same batch of material. Tensile strength and ductility of the HPFRCC materials were significantly reduced with increasing strain rate. Multiple cracking, strain hardening, strain capacity, and the shape of the stress–strain response were found to be dependent on specimen geometry. SEM images taken of the fracture plane of several specimens indicated that pullout and fracture of the fibers occurred for both HPFRCC materials studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号