首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-house synthesized multiwall carbon nanotubes (MWCNTs) have been dispersed in acrylonitrile butadiene styrene (ABS) using a micro twin-screw extruder with back flow channel. The electrical and mechanical properties of MWCNTs in ABS with different wt% have been studied. Incorporation of only 3 wt. % MWCNTs in ABS leads to significant enhancement in the tensile strength (up to 69.4 MPa) which was equivalent to 29% increase over pure ABS. The effect of MWCNTs on the structural behaviour of ABS under tensile loading showed a ductile to brittle transition with increase concentration of MWCNTs. The results of enhanced mechanical properties were well supported by micro Raman spectroscopic and scanning electron microscopic studies. In addition to the mechanical properties, electrical conductivity of these composites increased from 10−12 to 10−5 Scm−1 showing an improvement of ∼7 orders of magnitude. Due to significant improvement in the electrical conductivity, EMI shielding effectiveness of the composites is achieved up to −39 dB for 10 wt. % loaded MWCNTs/ABS indicating the usefulness of this material for EMI shielding in the Ku-band. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. This material can be used as high-strength EMI shielding material.  相似文献   

2.
In this work, inspired by the great advantage of the unique “brick-mortar” layered structure as electromagnetic interference (EMI) shielding materials, a multifunctional flexible graphene nanosheets (GNS)/polytetrafluoroethylene (PTFE) composite film with excellent EMI shielding effects, impressive Joule heating performance, and light-to-heat conversion efficiency is fabricated based on the self-emulsifying process of PTFE. Both PTFE microspheres and nanofibers are employed together for the first time as “sand and cement” to build unique nacre-structured EMI shielding materials. Such configuration can obviously enhance the adhesion of composites and improve their mechanical property for the application under extreme environment. Moreover, the simple and effective repetitive roll pressing method can be used for the scalable production in industrialization. The GNS/PTFE composite film shows a high EMI shielding effectiveness (SE) of 50.85 dB. Furthermore, it has a high thermal conductivity of 16.54 W (m K)−1, good flexibility, and recyclable properties. The excellent fire-resistant and hydrophobic properties of GNS/PTFE film also ensure its reliability and safety in practical application. In conclusion, the GNS/PTFE film demonstrates the potential for industrial manufacturing, and outstanding EMI shielding performance with high stability and durability, which has a broad application prospect for electronic devices in practical extreme outdoor environments.  相似文献   

3.
Reduced graphene oxide deposited carbon fiber (rGO-CF) was prepared by introducing GO onto CF surface through electrophoretic deposition method, following by reducing the GO sheets on CF with NaBH4 solution. The rGO-CF was found to be more effective than CF to improve the electromagnetic interference (EMI) shielding property of unsaturated polyester (UP) based composites. With 0.75% mass fraction of rGO-CF, the shielding effectiveness of the composite reached 37.8 dB at the frequency range of 8.2–12.4 GHz (x-band), which had 16.3% increase than that of CF/UP composite (32.5 dB) in the same fiber mass fraction. The results suggest that rGO-CF is a good candidate for the use as a light-weight EMI shielding material.  相似文献   

4.
Ultrathin, lightweight, high-strength, and thermally conductive electromagnetic interference (EMI) shielding materials with high shielding effectiveness (SE) are highly desired for next-generation portable and wearable electronics. Pristine graphene (PG) has a great potential to meet all the above requirements, but the poor processability of PG nanosheets hinders its applications. Here, efficient synthesis of highly aligned laminated PG films and nacre-like PG/polymer composites with a superhigh PG loading up to 90 wt% by a scanning centrifugal casting method is reported. Due to the PG-nanosheets-alignment-induced high electrical conductivity and multiple internal reflections, such films show superhigh EMI SE comparable to the reported best synthetic material, MXene films, at an ultralow thickness. An EMI SE of 93 dB is obtained for the PG film at a thickness of ≈100 µm, and 63 dB is achieved for the PG/polyimide composite film at a thickness of ≈60 µm. Furthermore, such PG-nanosheets-based films show much higher mechanical strength (up to 145 MPa) and thermal conductivity (up to 190 W m−1 K−1) than those of their MXene counterparts. These excellent comprehensive properties, along with ease of mass production, pave the way for practical applications of PG nanosheets in EMI shielding.  相似文献   

5.
利用纤维素纳米纤丝(CNF)和氧化石墨烯(GO)共稳定的含有聚甲基丙烯酸甲酯(PMMA)的Pickering乳液法,并经抽滤、还原、热压等工艺制备高性能的纤维素纳米纤丝-还原氧化石墨烯/聚甲基丙烯酸甲酯(CNF-rGO/PMMA)电磁屏蔽复合材料。通过调节油相中聚合物的质量浓度、水油体积比,从而调控GO在复合材料中的质量分数。研究GO还原方式、质量分数及热压过程对所制备的CNF-rGO/PMMA电磁屏蔽复合材料的形貌结构与性能的影响。CNF-rGO/PMMA电磁屏蔽复合材料中GO经水合肼处理后有效还原为rGO,热压工艺使包裹在PMMA颗粒外的CNF-rGO片层与PMMA颗粒紧密堆积并形成交联的三维导电网络从而具有优异的导电率,在X波段不同频率(8.2~12.4 GHz)下具有良好的电磁屏蔽效能及稳定性,电磁屏蔽效能可达20 dB以上,可用于民用电磁屏蔽材料。   相似文献   

6.
To guarantee the normal operation of next generation portable electronics and wearable devices, together with avoiding electromagnetic wave pollution, it is urgent to find a material possessing flexibility, ultrahigh conductive, and superb electromagnetic interference shielding effectiveness (EMI SE) simultaneously. In this work, inspired by a building bricks toy with the interlock system, we design and fabricate a copper/large flake size graphene (Cu/LG) composite thin film (≈8.8 μm) in the light of high temperature annealing of a large flake size graphene oxide film followed by magnetron sputtering of copper. The obtained Cu/LG thin‐film shows ultrahigh thermal conductivity of over 1932.73 (±63.07) W m?1 K?1 and excellent electrical conductivity of 5.88 (±0.29) × 106 S m?1. Significantly, it also exhibits a remarkably high EMI SE of over 52 dB at the frequency of 1–18 GHz. The largest EMI SE value of 63.29 dB, accorded at 1 GHz, is enough to obstruct and absorb 99.99995% of incident radiation. To the best of knowledge, this is the highest EMI SE performance reported so far in such thin thickness of graphene‐based materials. These outstanding properties make Cu/LG film a promising alternative building block for power electronics, microprocessors, and flexible electronics.  相似文献   

7.
Carbon nanotube (CNT)/cellulose composite materials were fabricated in a paper making process optimized for a CNT network to form on the cellulose fibers. The measured electric conductivity was from 0.05 to 671 S/m for 0.5–16.7 wt.% CNT content, higher than that for other polymer composites. The real permittivities were the highest in the microwave region. The unique CNT network structure is thought to be the reason for these high conductivity and permittivity values. Compared to other carbon materials, our carbon CNT/cellulose composite material had improved parameters without decreased mechanical strength. The near-field electromagnetic shielding effectiveness (EMI SE) measured by a microstrip line method depended on the sheet conductivity and qualitatively matched the results of electromagnetic field simulations using a finite-difference time-domain simulator. A high near-field EMI SE of 50-dB was achieved in the 5–10 GHz frequency region with 4.8 wt.% composite paper. The far-field EMI SE was measured by a free space method. Fairly good agreement was obtained between the measured and calculated results. Approximately 10 wt.% CNT is required to achieve composite paper with 20-dB far-field EMI SE.  相似文献   

8.
We investigated the electromagnetic interference shielding effectiveness (EMI SE) of composites consisting of an unsaturated polyester matrix containing woven glass or carbon fibers that had been coated with multiwalled carbon nanotubes (MWCNTs). Composite panels consisting of fiber fabrics with various combinations of fabric type and stacking sequence were fabricated. Their EMI SE was measured in the frequency range of 30 MHz–1.5 GHz. The underlying physics governing the EMI shielding mechanisms of the materials, namely, absorption, reflection, and multiple reflections, was investigated and used in analytical models to predict the EMI SE. Simulation and experimental results showed that the contributions of reflection and absorption to EMI shielding is enhanced by sufficient impedance mismatching, while multiple reflections have a negative effect. For a given amount of MWCNTs in the glass-fiber–reinforced composite, coating the outermost, instead of intermediate, glass fiber plies with MWCNTs was found to maximize the conductivity and SE.  相似文献   

9.
Materials with an ultralow density and ultrahigh electromagnetic‐interference (EMI)‐shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT–multilayered graphene edge plane (MLGEP) core–shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X‐band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm?3, respectively, which far surpasses the best values of reported carbon‐based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT–MLGEP hybrids also exhibit a great potential as nano‐reinforcements for fabricating high‐strength polymer‐based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials.  相似文献   

10.
石墨烯/聚苯胺复合材料的电磁屏蔽性能   总被引:2,自引:0,他引:2       下载免费PDF全文
采用直流电弧放电法制备高结晶性石墨烯, 利用乙醇助溶分散法得到石墨烯/聚苯胺电磁屏蔽复合材料, 研究不同掺杂比例的石墨烯/聚苯胺复合材料的电磁屏蔽性能。拉曼光谱分析表明: 由于石墨烯与聚苯胺之间的相互作用, 复合材料中聚苯胺特征峰比纯聚苯胺特征峰稍弱或向低频方向移动。复合物的电导率随石墨烯掺杂量的增加而增大, 当掺杂质量分数为25%时, 其电导率达到19.4 S/cm, 接近纯石墨烯电导率(20.1 S/cm)。频率为2~18 GHz时, 复合材料的电磁屏蔽效能随着石墨烯掺杂量和频率的增大而增强; 当石墨烯掺杂质量分数为25%时, 总屏蔽效能在2~18 GHz范围内由19.8 dB增至34.2 dB, 增加了约42%, 其中吸收部分占总屏蔽效能的比例为66%~81%, 这表明石墨烯/聚苯胺复合材料的电磁屏蔽性质是以电磁波吸收为主; 同时也说明了拥有特殊结构与特性的石墨烯是一种较好的聚苯胺填料, 在微波屏蔽与微波吸收领域将会有广阔的应用前景。  相似文献   

11.
The use of fibril materials as substrate for reinforcing polymers has wide industrial applications. In this article, we discuss polyaniline and polypyrrole as conducting polymers to provide electronic conductivity in E-glass fabric reinforced conducting composite with varied degree of composition and conductivity using industrially important polymers polymethylmethacrylate and polyvinyl chloride as a host matrix. Aromatic sulphonic acids such as PXSA, OXSA, PSA, PDSA, RDSA, OCPSA and MCSA were used as a dopant. The influence of the aromatic ring substituents in these dopants over the conductivity and processibility due to various interactions has been studied. The study shows that due to bulk nature of conductivity, shielding effectiveness (SE) increases with increase in conductivity and thickness of a composite. The test samples were characterized by conductivity and electromagnetic shielding effectiveness (EMI SE). The electromagnetic shielding effectiveness was measured by co-axial transmission line method in the frequency range of 0.01–1000 MHz. These composites with both side shielded by polypyrrole offered a uniform shielding effectiveness of 69 dB.  相似文献   

12.
目的 开发具有优异屏蔽效率、轻质且热稳定性良好的电磁屏蔽材料。方法 以聚酰亚胺(PI)为聚合物基体,聚吡咯(PPy)为添加相,采用静电纺丝-低温原位聚合技术制备PPy/PI电磁屏蔽复合膜。通过在薄膜内部的多孔结构中构建致密的导电网络,赋予复合膜优异的导电性和高效的电磁屏蔽效能。结果 在聚合PPy浓度为0.1 mol/L时,复合膜的电导率和电磁屏蔽效能分别为2.23 S/cm和26.04 dB,且其单位厚度电磁屏蔽效能可达到110.81 dB/mm,展现出优异的电磁屏蔽性能。结论 PPy/PI复合纤维膜表现出良好的力学性能(拉伸强度为11.73 MPa)、优异的热稳定性(>400 ℃)和力学传感性能,具备在恶劣环境下广泛应用的潜力。  相似文献   

13.
Conductive polymer composites (CPCs) that contain a segregated structure have attracted significant attentions because of their promising for fulfilling low filler contents with high electromagnetic interference (EMI) properties. In the present study, segregated poly(vinylidene fluoride) (PVDF)/multi-walled carbon nanotubes (MWCNTs) composites were successfully prepared by mechanical mixing and hot compaction. The PVDF/MWCNTs samples with 7 wt% filler content possess high electrical conductivities and high EMI shielding effectiveness (SE), reaching 0.06 S cm−1 and 30.89 dB (in the X-band frequency region), much higher than lots of reported results for CNT-based composites. And the EMI SE greatly increased across the frequency range as the sample thickness was improved from 0.6 to 3.0 mm. The EMI shielding mechanisms were also investigated and the results demonstrated absorption dominating shielding mechanism in this segregated material. This effective preparation method is simple, low-cost, and environmentally-friendly and has potential industrial applications in the future.  相似文献   

14.
Poly(trimethylene terephthalate) [PTT]/multiwalled carbon nanotube [MWCNT] composites having varying amounts of MWCNTs were fabricated with an aim to investigate the potential of such composites as an effective light weight electromagnetic interference (EMI) shielding material in the frequency range of 12.4-18 GHz (Ku-band). PTT/MWCNT composite with shielding effectiveness (SE) of 36-42 dB was obtained at 10% (w/w) MWCNT loading. Shielding mechanism was studied by resolving the total SE into absorption (SEA) and reflection loss (SER). PTT/MWCNT composite showed absorption dominated shielding; thus it can be used as microwave, radar absorbing and stealth material. The effect of MWCNT loadings on electrical conductivity (σ) and dielectric properties of PTT and the correlation among conductivity, tan δ, absorption loss and reflection loss were also studied.  相似文献   

15.
The metal-deposited poly(vinyl alcohol) (PVA) composite nanofibrous mats were fabricated by electrospinning and metal-deposition methods for electromagnetic interference (EMI) shielding applications. The metal-deposited nanofiber mats prepared with various metals (Cu, Ni, Ag), their different thicknesses, and different metal deposition systems composed of Cu and Ni were used for EMI shielding measurement. For the EMI SE measurement, a near-field antenna measurement system was used. The measurement of EMI SE was carried out at the frequency range from 0.5 to 18 GHz, and the electromagnetic parameters were measured. The experimental results showed that absorption was the major shielding mechanism and reflection was the secondary shielding mechanism. The effect of unique porous structure of the metal-deposited composite nanofibrous mats was also discussed.  相似文献   

16.
This work reported preparation of porous composites using a simple dip-coating method, and the fabricated composites containing hybrid carbon nanomaterials performed excellent electromagnetic interference (EMI) shielding properties. A commercial sponge was coated with silver nanoparticles before being dip-coated with graphene (GP)/ink, multi-wall carbon nanotubes (MWCNTs)/ink, or hybrid GP/MWCNTs/ink to form Ag/carbon nanomaterial hybrid composites, and then the composites were subjected to EMI measurements in the frequency range of 0.45–1.5 GHz. For comparison, the sponges without Ag nanoparticle coating were also prepared. Herein, we found an insignificant difference in EMI SE among the porous composites without Ag nanoparticle coating, and the maximum values of approximately 14.4 dB was attained. Interestingly, the hybrid composites with Ag nanoparticle coating exhibited maximum EMI shielding of 24.33 dB. Due to their porous structure, the EMI SE measurements showed that reflection dominates the EMI SE for all the sponge composites studied in this work.  相似文献   

17.
阐述了单层石墨烯、石墨烯带及石墨烯复合材料的导热性能。介绍了各种测试模型,综述了石墨烯的层数、纵横比、几何结构、边缘粗糙度、衬底耦合作用、温度等因素对其导热性能的影响。提出了石墨烯及其复合材料导热性能可深入研究的方面。  相似文献   

18.
通过多次重复先驱体浸渍裂解(PIP)工艺过程,改变材料的孔隙率和体密度,制备不同孔隙率的三维针刺碳/碳(C/C)复合材料,并研究了在8.2~12.4GHz频率范围内(X波段)不同孔隙率C/C复合材料的电磁屏蔽效能。结果表明:适当降低孔隙率有利于提高C/C复合材料的总电磁屏蔽效能和电磁吸收屏蔽效能,当开气孔率为33.4%时,C/C复合材料具有最大的电磁屏蔽效能(40dB),且电磁吸收屏蔽效能(30dB)远大于电磁反射屏蔽效能(12dB),是极具潜力的高吸收低反射电磁屏蔽材料。  相似文献   

19.
5G电子消费产品日益普及,给人们的生活带来便利的同时也存在一些问题,如电磁干扰(EMI)风险大幅度提高,5G网络耗电速度快等。因此需要开发具有高EMI屏蔽性能的膜材料和高容量的电极材料来解决这些问题。作为一种新型二维材料,过渡金属碳化物、氮化物或氮碳化物(称为MXene)具有出色的导电性、低密度、亲水性表面、二维层状形态和可调节的表面化学性质等诸多优势。此外,由于MXene具有容易成膜的特点,在EMI屏蔽和储能设备等领域具有巨大的应用潜力。目前已经报道了很多基于MXene复合薄膜的工作,本文首先介绍了MXene纳米片的合成方法,然后讨论了MXene基复合薄膜的制备方法,目的是总结制备MXene复合薄膜的各种方法及其优缺点。其次,分别介绍了MXene在锂离子电池和超级电容器及EMI屏蔽膜中的应用,分析了目前的发展趋势,并且对目前主流的复合材料进行了对比,归纳了MXene复合薄膜在结构和性能上的特点和优势。最后,提出了目前MXene复合薄膜的发展所存在的问题,并对未来发展进行了展望。  相似文献   

20.
Zhu Y  Tour JM 《Nano letters》2010,10(11):4356-4362
Described here is a room temperature procedure to fabricate graphene nanoribbon (GNR) thin films. The GNRs, synthesized by unzipping carbon nanotubes, were reduced and functionalized. The functionalized GNRs are negatively or positively charged, which are suitable to assemble thin films by electrostatic layer-by-layer absorption. The homogenous full GNR films were fabricated on various substrates with controllable thicknesses. By assembling the GNRs films on silicon oxide/silicon surfaces, bottom-gated GNR thin-film transistors were fabricated in a solution processed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号