首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the findings of a research study investigating the energy-absorbing characteristics of polymer foams reinforced with small carbon fibre reinforced epoxy tubes. Initial attention focuses on establishing the influence of tube diameter on the specific energy absorption (SEA) characteristics of the chamfered CFRP tubes. Here, it is shown that the SEA of the tubes increases rapidly with decreasing diameter/thickness ratio, with the highest values being close to 93 kJ/kg. Similar tests were conducted at dynamic rates of strain, where it was observed that the measured values of SEA were lower than the corresponding quasi-static data, possibly due to rate-sensitive effects in the delamination resistance of the composite material. In the next stage of the investigation, the composite tubes were embedded in a range of polymer foams in order to establish the influence of both tube arrangement and foam density on the crush behaviour of these lightweight structures. In addition, a limited number of blast tests have been undertaken on structures based on these core materials. Here, extensive crushing of the composite tubes was again observed, suggesting that these structures should be capable of absorbing significant energy when subjected to this severe loading condition. Finally, the results of these tests are compared with previously-published data from studies on a range of different cores materials. Here, it has been shown that the energy-absorbing characteristics of these systems exceed values associated with other core materials, such as aluminium honeycombs, polymer honeycombs and metal foams.  相似文献   

2.
This paper aims to explore the dynamic responses and crashing characteristics of double hat shaped tubes made of weave carbon fiber reinforced plastic (CFRP). Experimental investigations were carried out into three different thicknesses and lengths of the composite tubes fabricated by the bladder molding process. Three distinct failure modes, classified as progressive end crushing, mid-length collapse and overlap opening, were observed in the dynamic crushing tests. Unlike continuous splaying fronds observed in the quasi-static tests, dynamic tests exhibited a number of fragment segments in the progressive end crushing mode. It is shown that the ply number was a critical parameter affecting the failure mode and energy absorption capability. The increase in ply number led to increases in the peak load and specific energy absorption (SEA); whereas the tubal length seemed insensitive to energy absorption capability. Compared to the quasi-static cases, the dynamic impact tests resulted in the higher peak load (increased from 46 % to 125 %) and lower SEA (reduced from 21 % to 33 %) for the tested tubes.  相似文献   

3.
A new simulation technique is presented for the phenomenological modelling of stable fragmentation in fibre reinforced composite structures under dynamic compressive loading. An explicit crash code is used for implementation of a hybrid modelling technique, in which two distinct material models act simultaneously. The first model is implemented in a multi-layered shell element and uses a unidirectional composites fracture criterion to predict potential ply fracture mechanisms on a macroscopic scale. This model is, however, unable to represent the complex localised fracture mechanisms that occur on a meso (sub-ply) scale under compression fragmentation loading. Therefore, a second constitutive model is added to capture the energy absorbing process within the fragmentation zone, utilising an Energy Absorbing Contact (EAC) formulation between the composite structure and the impacting body. The essential benefits of the procedure are that it requires minimal input data that can be obtained from simple fragmentation tests, and that the procedure is computationally efficient enabling application to large scale industrial structures. The EAC theory is discussed, together with the required material model parameters. A series of dynamic axial and oblique impact tests and simulations of cylindrical continuous carbon fibre reinforced composite tubes have been performed to validate the approach. Furthermore, the application to more complex load cases including combinations of fragmentation and global structural fracture have also shown a good correlation with test results.  相似文献   

4.
Natural disasters such as cyclone, hurricane, tornado and typhoon cause tremendous loss around the world. The windborne debris usually imposes high speed localized impact on the building envelope, which may harm people inside the building and create dominant openings. A dominant opening in the building envelope might cause internal pressure increasing and result in substantial damage to the building structures, such as roof lifting up or even collapse. To withstand the impact of such extreme event, the penetration resistant capacity of wall or roof panels to windborne debris impact should meet the requirements specified in the wind loading codes, e.g., the Australian Wind Loading Code (AS/NZS 1170.2:2011). In this study, a composite Structural Insulated Panel (SIP) with Extended Polystyrene (EPS) core sandwiched by flat metal skins that is commonly used in building industry was investigated. To study the structural response and penetration resistant capacity of the composite panel against windborne debris impacts, a series of laboratory tests were carried out by using a pneumatic cannon testing system. The effects of various specimen configurations, impact locations and debris impact velocities on their performance were investigated. The failure modes under various projectile impact scenarios were observed and compared by using two high-speed cameras. The dynamic responses were examined quantitatively in terms of the opening size, residual velocity of projectile, deformation and strain time histories on the back skin measured in the tests. The penetration resistance capacity of the panels subjected to windborne debris impact were examined and analyzed. In addition, numerical models were developed in LS-DYNA to simulate the response and damage of the composite SIP under windborne debris impact. Laboratory tested panels were first modeled. The test data was used to calibrate the accuracy of the numerical model. The validated numerical model was then used to conduct more numerical simulations to obtain more results such as energy absorption, impact force and vulnerability curve of the SIP against windborne debris impact.  相似文献   

5.
The low velocity impact response of two aluminium honeycomb sandwich structures has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Initially, the rate-sensitivity of the glass fibre reinforced/epoxy skins and aluminium core was investigated through a series of flexure, shear and indentation tests. Here, it was found that the flexural modulus of the composite skins and the shear modulus of the aluminium honeycomb core did not exhibit any strain-rate sensitivity over the conditions investigated here. In addition, it was found that the indentation characteristics of this lightweight sandwich structure can be analysed using a Meyer indentation law, the parameters of which did not exhibit any sensitivity to crosshead displacement rate.

The impact response of the aluminium honeycomb sandwich structures was modelled using a simple energy-balance model which accounts for energy absorption in bending, shear and contact effects. Agreement between the energy-balance model and the experimental data was found to be good, particularly at low energies where damage was localised to the core material immediate to the point of impact. The energy balance was also used to identify energy partitioning during the impact event. Here, it was shown that the partition of the incident energy depends strongly on the geometry of the impacting projectile.  相似文献   


6.
Impact tests with a falling dart and flexural measurements were carried out on polypropylene based laminates reinforced with glass fibers fabrics. Research has shown that the strong fiber/matrix interface obtained through the use of a compatibilizer increased the mechanical performance of such composite systems. The improved adhesion between fibers and matrix weakly affects the flexural modulus but strongly influences the ultimate properties of the investigated woven fabric composites. In fact, bending tests have shown a clear improvement in the flexural strength for the compatibilized systems, in particular when a high viscosity/high crystallinity polypropylene was used. On the contrary, the low velocity impact tests indicated an opposite dependence on the interface strength, and higher energy absorption in not compatibilized composites was detected. This result has been explained in terms of failure mechanisms at the fiber/matrix interface, which are able to dissipate large amounts of energy through friction phenomena. Pull-out of fibers from the polypropylene matrices have been evidenced by the morphological analysis of fracture surfaces after failure and takes place before the fibers breakage, as confirmed by the evaluation of the ductility index.  相似文献   

7.
The development and thermo-mechanical characterization of a novel green composite lamina, made of PolyLactic Acid (PLA) reinforced with a natural fabric extracted from Manicaria Saccifera palm, are presented. The composite was characterized by thermal-analysis (TGA), tensile, flexural, and izod impact tests, and scanning electronic microscopy (SEM). TGA analysis showed that the degradation process of the composite started earlier than that of neat PLA due to the lower thermal stability of the fabric. The mechanical tests showed that PLA properties were improved. The tensile strength, elastic modulus and impact resistance were improved by 26%, 51% and 56% respectively. Good dispersion and mechanical interlocking of PLA into the fabric were seen by SEM explaining the improvements of the mechanical properties of the composite. In summary, the good tensile properties and the excellent energy absorption capabilities of the MF/PLA composite lamina show great potential of Manicaria fabric as reinforcement in green composites.  相似文献   

8.
Hybrid laminated composites were fabricated based on high-density flexible polyurethane foam and reinforced with inter/intra-ply hybrid laminates. Transient responses of hybrid composites under quasi-static and dynamic loadings with various thicknesses and expansion factors were comparatively investigated. Experimental results revealed that foam cell collapse and hybrid laminates rupture were dominant mechanisms of energy absorption. Interlaminar stress and composite tensile strength determined the compressive potential energy and double-peak behavior. Quasi-static bursting and puncture resistances exhibited totally different relationships to various constructions and expansion factors. Energy dissipation capacity is influenced more significantly by the constant rate of transverse (CRT) puncture than dynamic puncture process. CRT puncture resistance is superior to the corresponding dynamic puncture resistance for all constructions. The hybrid laminated composites contributes to eliminate more than 95% of the incident force in the drop weight impact test. Compared with non-laminated panel, the hybrid laminated composites exhibited higher resistance to static and dynamic loadings.  相似文献   

9.
The crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structural integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. Finally, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).  相似文献   

10.
The purpose of this study is to evaluate effects of stacking thickness on the microscopic damage behavior in a filament wound carbon fiber reinforced plastics (FW-CFRPs) composite cylinder subjected to impact or quasi-static out-of-plane loading. From both tests, thicker CFRP improved the stiffness of the cylinder and decreased the resultant plastic deformation due to indentation. From the cross-sectional observation, it is clarified that fiber breakages were localized for the specimens with impact tests more than 10-layers and specimens with quasi-static tests more than 15-layers. In order to discuss the relation between the damage and the absorbed energy, damage depth ratio was defined as fiber damage depth per unit CFRP thickness. To normalize the effect of thickness, absorbed energy ratio was also defined as absorbed energy per unit CFRP thickness. Absorbed energy ratio as a function of absorbed energy ratio was expressed as one master curve regardless of loading conditions.  相似文献   

11.
A low-density three-dimensional cellular-matrix composite reinforced with woven carbon fabric (3DCMC), was fabricated by means of a pressure-quenching molding technique with nitrogen gas as the blowing agent. Epoxy resins in the interstices of yarns in the 3DCMC samples were vacated during the foaming process and needle shaped voids were also generated between fibers in yarns. The average density of the 3DCMC samples was about 103 kg/m3, and their density reduction was 28–37% compared with a regular matrix composite with the same preform. The 3DCMC has 32–42% higher specific tensile strength, 14–37% greater specific tensile modulus, a lower specific flexure strength but 35% higher specific tangent modulus in 3-point bending, a 30–40% higher specific impact energy absorption at an impact velocity around 120 m/s and a similar specific energy absorption at about 220 m/s. Meanwhile, the 3-point bending and impact test results of 3DCMC showed that they have different fracture mechanisms from that of 3DRMC.  相似文献   

12.
An investigation is described concerning the interaction of propagating inter-laminar cracks with embedded strips of interleaved materials in E-glass fibre reinforced epoxy composite. The approach deploys inter-ply strips of thermoplastic film, chopped aramid fibres, pre-impregnated fibre reinforced tape and thermosetting adhesive film, ahead of the crack path on the mid-plane of end loaded split (ELS) specimens promoting energy absorbing mechanisms, at low strain rates, through interfacial toughening ahead of the propagating crack.Following experimental mode II tests, the features were observed to imbue an apparent increase in the toughness of the parent material and suppression of crack growth. The mechanism behind the energy absorption and the behaviour of the crack interaction at the boundary of the interleave edge on ingress and egress were analysed using fractographic processes.  相似文献   

13.
This paper concentrates on the experimental investigation of the self-reinforced all-polypropylene composites. There exists an optimum processing condition to produce high quality specimens by injection–compression molding. Tensile and 3-point bending properties of the virgin PP materials were nearly unaffected by the introduction of reinforcing knit layer(s) due to very low fibre content of the knitted fabrics used. 3-point bending properties were also unaffected by the surface of indentation-flexure. The applied impact energy was maintained at 5 J for the homo-PP and 27 J for the block-PP materials, respectively, to cause penetration during drop-weight impact tests. It is interestingly noteworthy that the self-reinforced homo-PP composites exhibited superior energy absorption capability when compared with the virgin matrix materials. The corresponding plate bending performances of the self-reinforced homo-PP composites also revealed consistent improvement as compared to their virgin counterparts. On the other hand, although virgin block-PP material exhibited better impact performances than its composite reinforced by the homo-PP knitted fabric, a notably small increase in the reinforcement fibre content revealed considerable improvement in the impact properties comparable to those of the virgin block-PP matrix materials. These self-reinforced homo-PP/block-PP materials have clearly indicated that they have the potential to out-perform the block-PP materials via modification and/or manipulation of the reinforcement knit structural/geometrical parameters and the content of reinforcement fibres. Both static and dynamic impact properties are likely to be affected by the local area properties of the tested face under indentation, and thereby contributing to the improved performances of the composite specimens with the knit face under the impact.  相似文献   

14.
本研究重点设计了在机动车中应用的抗撞缓冲樑.设计里独特的地方体现在方形的纤维增强复合材料筒里放置圆形纤维增强复合材料筒,可以实现高能量吸收(缓冲)和高强度(抗撞).静态压缩实验调查了圆形筒端部的斜削角以及材料组合的影响,并发现玻璃纤维增强角筒联合炭素纤维增强圆筒可以得到最佳效果.  相似文献   

15.
Single-lap shear behaviour of carbon–epoxy composite bolted aircraft fuselage joints at quasi-static and dynamic (5 m/s and 10 m/s) loading speeds is studied experimentally. Single and multi-bolt joints with countersunk fasteners were tested. The initial joint failure mode was bearing, while final failure was either due to fastener pull-through or fastener fracture at a thread. Much less hole bearing damage, and hence energy absorption, occurred when the fastener(s) fractured at a thread, which occurred most frequently in thick joints and in quasi-static tests. Fastener failure thus requires special consideration in designing crashworthy fastened composite structures; if it can be delayed, energy absorption is greater. A correlation between energy absorption in multi-bolt and single-bolt joint tests indicates potential to downsize future test programmes. Tapering a thin fuselage panel layup to a thicker layup at the countersunk hole proved highly effective in achieving satisfactory joint strength and energy absorption.  相似文献   

16.
In order to improve impact tolerance and energy absorption of sandwich panel under impact loading, a new aluminum hollow tube reinforced shape memory polymer (AHTR-SMP) composite sandwich core is designed and fabricated. Physical/mechanical properties were examined through a variety of tests, including axial compression, three-point bending, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and shape recovery tests. In order to characterize its dynamic performances, low velocity impact test was conducted. According to the tests results, this new AHTR-SMP core demonstrated considerable impact tolerance and damage healing functionality, and may be considered as a promising option for critical structural applications featured by tolerating repeated impacts.  相似文献   

17.
In this study, composite plates were manufactured by hand lay-up process with epoxy matrix (DGEBA) reinforced with Kevlar fiber plain fabric and Kevlar/glass hybrid fabric, using to an innovative architecture. Results of the mechanical properties of composites were obtained by tensile, bending and impact tests. These tests were performed in the parallel direction or fill directions of the warp and in a 90° direction. FTIR was used in order to verify the minimum curing time of the resin to perform the mechanical tests, and scanning electron microscopy was used to observe reinforcement and matrix fractures. Composites with Kevlar/glass hybrid structure in the reinforcing fabric showed the better results with respect to specific mechanical strength, as well as bending and impact energy.  相似文献   

18.
Closed cell aluminum foam (AF) has extensive application prospects due to its extended plateau stress region and high energy absorption capacity. As one of the most important manufacturing routes for aluminum foams, the gas injection method still does not guarantee an excellent energy absorption performance. In order to improve the energy absorption capacity while remaining the plateau region extended, epoxy resin (ER) was infiltrated into the aluminum foams in various composite forms. In this paper, different AF-ER composite structures were designed and their uniaxial quasi-static compressive behaviors were investigated. The experimental results indicate that the plateau stress and energy absorption capability of the AF-ER composite structures increase with increasing amount of epoxy resin. Additionally, both the stress fluctuation and the peak stress in the plateau region become insignificant, which is beneficial for energy absorption applications. The composite form is also confirmed to have great effect on the compressive property of the AF-ER composite structures. At last, the Young's modulus of the composite structure is theoretically deduced while the plateau stress and the energy absorption capacity are fitted with the composite parameters by considering the contribution of aluminum foam, epoxy resin and the reciprocity of these two materials. The present model is found to have good agreement with experimental data.  相似文献   

19.
The application of shear thickening fluid (STF) on Kevlar fabrics improves the impact energy absorption by the soft composite as the viscosity of the former increases drastically during impact. The influence of process parameters like padding (squeezing) pressure and silica concentration in STF on impact performance of Kevlar–STF soft composite has been investigated in this research. The impact energy has been measured by dynamic impact tester as well as by low speed bullet impact test using a 0.380 Caliber revolver. Higher STF concentration improves the impact energy absorption by the Kevlar–STF soft composite. Higher padding pressure reduces the STF add-on% on Kevlar fabrics making the composite lighter. However, the impact energy absorption by the Kevlar–STF composite increases with the increase in padding pressure due to better and uniform distribution of STF within the fabric and yarn structures. The beneficial effect of higher padding pressure on impact energy absorption was also verified by the low velocity bullet impact test. At optimum process conditions, the impact energy absorption by Kevlar–STF soft composite goes up by around 150% and 400%, depending on the type of Kevlar fabric.  相似文献   

20.
Novel 3D-textile reinforced composites with a stretched fibre arrangement have very good specific mechanical properties and outstanding energy absorption capabilities. With respect to the specific technical requirements, 3D-textile preforms can be adjusted with regard to stiffness, strength and crash-worthiness by the intelligent combination of different fibre materials in the textile preform. Thus, hybrid 3D-textile preforms with tailored property profiles are excellent candidates for the use in impact and crash components of innovative lightweight structures for the aircraft and vehicle industry as well as for mechanical engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号