首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
神经网络-遗传算法优化反应烧结ZrO2-SiC材料制备工艺   总被引:13,自引:0,他引:13       下载免费PDF全文
应用人工神经网络对反应烧结ZrO2-SiC材料制备中工艺参数与原位SiC颗粒生成量的关系进行拟合和预测,并结合遗传算法优化出了最佳制备工艺.  相似文献   

2.
过程神经网络的训练及其应用   总被引:47,自引:0,他引:47  
研究过程神经网络的学习算法及其在过程模式识别中的应用。针对权值基展开的过程神经网络讨论了权值基的选取规则和对采样曲线的标准化处理问题,给出了含一个隐层的过程神经网络的误差反传播学习算法。以聚合化学反应和渗流实验两个具体实例验证了算法的有效性,也说明了过程神经网络的广泛应用前景。  相似文献   

3.
Fault diagnosis is confronted with two problems; how to “measure“ the growth of a fault and how to predict the remaining useful lifetime of such a failing component or machine. This paper attempts to solve these two problems by proposing a model of fault prognosis using wavelet basis neural network. Gaussian radial basis functions and Mexican hat wavelet frames are used as scaling functions and wavelets, respectively. The centers of the basis functions are calculated using a dyadic expansion scheme and a k-means clustering algorithm.  相似文献   

4.
The results of this paper show that neural networks could be a very promising tool for reliability data analysis. Identifying the underlying distribution of a set of failure data and estimating its distribution parameters are necessary in reliability engineering studies. In general, either a chi-square or a non-parametric goodness-of-fit test is used in the distribution identification process which includes the pattern interpretation of the failure data histograms. However, those procedures can guarantee neither an accurate distribution identification nor a robust parameter estimation when small data samples are available. Basically, the graphical approach of distribution fitting is a pattern recognition problem and parameter estimation is a classification problem where neural networks have been proved to be a suitable tool. This paper presents an exploratory study of a neural network approach, validated by simulated experiments, for analysing small-sample reliability data. A counter-propagation network is used in classifying normal, uniform, exponential and Weibull distributions. A back-propagation network is used in the parameter estimation of a two-parameter Weibull distribution.  相似文献   

5.
    
Calculating the semantic similarity of two sentences is an extremely challenging problem. We propose a solution based on convolutional neural networks (CNN) using semantic and syntactic features of sentences. The similarity score between two sentences is computed as follows. First, given a sentence, two matrices are constructed accordingly, which are called the syntax model input matrix and the semantic model input matrix; one records some syntax features, and the other records some semantic features. By experimenting with different arrangements of representing thesyntactic and semantic features of the sentences in the matrices, we adopt the most effective way of constructing the matrices. Second, these two matrices are given to two neural networks, which are called the sentence model and the semantic model, respectively. The convolution process of the neural networks of the two models is carried out in multiple perspectives. The outputs of the two models are combined as a vector, which is the representation of the sentence. Third, given the representation vectors of two sentences, the similarity score of these representations is computed by a layer in the CNN. Experiment results show that our algorithm (SSCNN) surpasses the performance MPCPP, which noticeably the best recent work of using CNN for sentence similarity computation. Comparing with MPCNN, the convolution computation in SSCNN is considerably simpler. Based on the results of this work, we suggest that by further utilization of semantic and syntactic features, the performance of sentence similarity measurements has considerable potentials to be improved in the future.  相似文献   

6.
基于RBF神经网络的水文地质参数识别   总被引:2,自引:0,他引:2  
水文地质参数识别问题是水文地质学上的一个难题.针对传统水文地质参数识别方法的局限性,提出了水文地质参数识别的径向基函数(RBF)神经网络方法,并通过算例验证了它的可行性与有效性,实现了水文地质参数的自动识别,提高了计算效率,比BP神经网络具有更好的参数识别效果.  相似文献   

7.
阐述了六自由度运动平台的控制原理,并根据控制系统的特点,提出采用基于RBF和BP神经网络来改进常规PID控制器实现系统控制性能。在该控制系统结构中,提出了在RBF网络辨识Jacobian的基础上,将BP神经网络引入了平台控制系统中PID控制器的控制参数在线整定的算法,最后给出了在MATLAB下的具体仿真算法。  相似文献   

8.
    
Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing, computational speed, and power efficiency. One landmark method is the diffractive deep neural network (D2NN) based on three-dimensional printing technology operated in the terahertz spectral range. Since the terahertz bandwidth involves limited interparticle coupling and material losses, this paper extends D2NN to visible wavelengths. A general theory including a revised formula is proposed to solve any contradictions between wavelength, neuron size, and fabrication limitations. A novel visible light D2NN classifier is used to recognize unchanged targets (handwritten digits ranging from 0 to 9) and targets that have been changed (i.e., targets that have been covered or altered) at a visible wavelength of 632.8 nm. The obtained experimental classification accuracy (84%) and numerical classification accuracy (91.57%) quantify the match between the theoretical design and fabricated system performance. The presented framework can be used to apply a D2NN to various practical applications and design other new applications.  相似文献   

9.
    
In recent years, deep neural networks have become a fascinating and influential research subject, and they play a critical role in video processing and analytics. Since, video analytics are predominantly hardware centric, exploration of implementing the deep neural networks in the hardware needs its brighter light of research. However, the computational complexity and resource constraints of deep neural networks are increasing exponentially by time. Convolutional neural networks are one of the most popular deep learning architecture especially for image classification and video analytics. But these algorithms need an efficient implement strategy for incorporating more real time computations in terms of handling the videos in the hardware. Field programmable Gate arrays (FPGA) is thought to be more advantageous in implementing the convolutional neural networks when compared to Graphics Processing Unit (GPU) in terms of energy efficient and low computational complexity. But still, an intelligent architecture is required for implementing the CNN in FPGA for processing the videos. This paper introduces a modern high-performance, energy-efficient Bat Pruned Ensembled Convolutional networks (BPEC-CNN) for processing the video in the hardware. The system integrates the Bat Evolutionary Pruned layers for CNN and implements the new shared Distributed Filtering Structures (DFS) for handing the filter layers in CNN with pipelined data-path in FPGA. In addition, the proposed system adopts the hardware-software co-design methodology for an energy efficiency and less computational complexity. The extensive experimentations are carried out using CASIA video datasets with ARTIX-7 FPGA boards (number) and various algorithms centric parameters such as accuracy, sensitivity, specificity and architecture centric parameters such as the power, area and throughput are analyzed. These results are then compared with the existing pruned CNN architectures such as CNN-Prunner in which the proposed architecture has been shown 25% better performance than the existing architectures.  相似文献   

10.
利用4层BP神经网络对非线性非连续函数的无穷逼近特性,设计了控制方法,对非线性系统的混沌运动进行控制。在系统发生混沌运动时,对于不同类型的期望信号,可以将不同自由度的混沌运动分别控制到各自的目标信号上。目标函数可以是周期函数,非线性函数。对Lorenz方程进行了仿真计算,结果显示可以将混沌运动控制到锯齿波信号、正弦信号和直流信号上;对Rossler方程的仿真计算,可以将系统的混沌运动控制到方波信号与直流信号上,控制所用的时间很短。  相似文献   

11.
针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法.研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网络,采用5种典型学习算法构造了3种多层感知器神经网络和2种径向基函数神经网络,并结合自动定深电液伺服系统的工程实例,详细分析了这5种神经网络在电液伺服系统中的建模性能.研究结果表明,采用正交最小二乘算法的径向基函数神经网络最适合电液伺服系统的建模.  相似文献   

12.
    
Fungal disease affects more than a billion people worldwide, resulting in different types of fungus diseases facing life-threatening infections. The outer layer of your body is called the integumentary system. Your skin, hair, nails, and glands are all part of it. These organs and tissues serve as your first line of defence against bacteria while protecting you from harm and the sun. The It serves as a barrier between the outside world and the regulated environment inside our bodies and a regulating effect. Heat, light, damage, and illness are all protected by it. Fungi-caused infections are found in almost every part of the natural world. When an invasive fungus takes over a body region and overwhelms the immune system, it causes fungal infections in people. Another primary goal of this study was to create a Convolutional Neural Network (CNN)-based technique for detecting and classifying various types of fungal diseases. There are numerous fungal illnesses, but only two have been identified and classified using the proposed Innovative Fungal Disease Diagnosis (IFDD) system of Candidiasis and Tinea Infections. This paper aims to detect infected skin issues and provide treatment recommendations based on proposed system findings. To identify and categorize fungal infections, deep machine learning techniques are utilized. A CNN architecture was created, and it produced a promising outcome to improve the proposed system accuracy. The collected findings demonstrated that CNN might be used to identify and classify numerous species of fungal spores early and estimate all conceivable fungus hazards. Our CNN-Based can detect fungal diseases through medical images; earmarked IFDD system has a predictive performance of 99.6% accuracy.  相似文献   

13.
针对弹体对混凝土材料侵彻深度问题,通过量纲分析和神经网络理论,建立了弹体侵彻深度h网络输出量与弹体长度lp、弹的长径比lp/d、弹体形状系数ψ、弹体与混凝土的比强度σyt/σyp、弹体与混凝土的密度比ρp/ρt等13个网络输入量之间的非线性映射关系。并采用RBF网络模型,通过Forrestal等文献的试验样本对网络模型训练,获得了弹体对混凝土材料侵彻深度的网络模型,输出结果满意。  相似文献   

14.
Ava Shahrokhi 《工程优选》2013,45(6):497-515
A multi-layer perceptron neural network (NN) method is used for efficient estimation of the expensive objective functions in the evolutionary optimization with the genetic algorithm (GA). The estimation capability of the NN is improved by dynamic retraining using the data from successive generations. In addition, the normal distribution of the training data variables is used to determine well-trained parts of the design space for the NN approximation. The efficiency of the method is demonstrated by two transonic airfoil design problems considering inviscid and viscous flow solvers. Results are compared with those of the simple GA and an alternative surrogate method. The total number of flow solver calls is reduced by about 40% using this fitness approximation technique, which in turn reduces the total computational time without influencing the convergence rate of the optimization algorithm. The accuracy of the NN estimation is considerably improved using the normal distribution approach compared with the alternative method.  相似文献   

15.
设Nn,Ф是以Ф为激活函数的具有n+1个神经元的前向单隐层人工神经网络的全体.主要证明了,若f∈C[0,1],则对于任意的ε>0,存在两个神经网络序列{Pn,Ф}和{Qn,Ф},使得在[0,1]上Qn,Ф(x)≤Qn+1,Ф(x)≤f(x)≤Pn+1,Ф(x)≤Pn,Ф(x),而且Pn,Ф(x)-Qn,Ф(x)≤(6+4(2~(1/2)))En,Ф(f),这里的En,Ф(f)为Nn,Ф中的元对f的最佳逼近.  相似文献   

16.
BP神经网络在谐波测量中的应用研究   总被引:3,自引:1,他引:3  
本文主要介绍了一种基于BP神经网络的谐波测量方法。与传统的谐波测量方法相比,其在实时性及精确度上有了很大的改善。文章重点介绍了BP神经网络结构和学习训练原理,并且针对传统BP训练算法学习速度较慢的缺点,提出了一种能够加快训练速度的新方法。实验结果表明,在谐波测量电路里采用新方法训练好的BP神经网络是可行的。  相似文献   

17.
The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules.  相似文献   

18.
利用先进的科学知识解决如今白酒包装中存在的瓷瓶及瓶盖的颜色协调问题,提出用神经网络来解决瓷酒瓶塑料瓶盖的配色问题,建立了相应的BP系统,并用实验仿真对该系统进行了验证.  相似文献   

19.
汽轮机故障诊断的遗传神经网络法   总被引:2,自引:0,他引:2  
阐明了遗传算法与神经网络结合的必要必邮多层感知器神经网络作为遗传搜索的问题表示方式的思想。设计了遗传神经网络故障诊断模型,用这种新方法解决了汽轮机多故障诊断问题。新方法可以简化神经网络的结构并逃逸局部极小。诊断结果与实际相符,从而验证了该方法的有效性和实用性。  相似文献   

20.
按订单设计(engineering-to-order, ETO)的定制产品因产品族结构比较复杂,产品间结构差异较大,设计过程涉及个人经验和灵感,并大量应用人机交互处理,难以实现设计自动化、程序化。人工神经网络模仿人脑结构及智能行为,具有大规模并行处理、容错、自组织和自适应能力及联想功能,符合ETO配置设计的特点。通过对ETO定制产品需求的分析,构建并训练具有一定结构和功能的BP神经网络,训练好的网络蕴含着ETO配置设计规则和经验。实例证明了该方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号