首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the mechanical and thermal properties of composites based on miscanthus fibres and poly lactic acid or polypropylene matrices. The treatment of fibres by corona discharge which results in a surface oxidation and an etching effect as shown by X-ray photoelectron spectroscopy and scanning electron microscopy, leads to an improvement of the interfacial compatibility between matrix and fillers. Hence the homogeneity of materials (checked by X-ray tomography and fractographic evaluation) is better, the mechanical properties measured by classical tensile tests are improved (Young moduli increase around 10-20%). Dynamic mechanical analysis performed on samples leads to similar conclusions (higher modules and slight increase of glass transition temperature hence restricted molecular movement). The thermal stability of composites was investigated by thermogravimetric analysis. While the incorporation of raw fibres leads to a slight decrease of decomposition temperature, it is systematically increased as soon as fillers have been treated.  相似文献   

2.
Biocomposites were prepared by reinforcing polylactic acid (PLA) with randomly oriented, short Spartium junceum L. fibres. Prior to the composite production, the fibres were treated with montmorillonite nanoclay (MMT) in order to increase biocomposites resistance to the fire. Characterizations of the biocomposites in the presence and absence of MMT and Citric acid (CA) were performed by Thermogravimetric Analysis (TGA) and Microscale Combustion Calorimetry (MCC). The results indicated that biocomposites reinforced with fibres modified with MMT enhanced some of its thermal properties. Degradation level of residual fibres (char) after the TGA treatment at 800 °C was observed by Scanning Electron Microscope (SEM). The work provided us with the idea of using MMT in the presence of CA as a crosslinker in biocomposites for possible applications.  相似文献   

3.
Composites of polypropylene, substitutable for a given application and reinforced with: Medium Density Fibreboard fibre (MDF) (40 wt%); flax (30 wt%); and glass fibre (20 wt%), were evaluated after 6 injection moulding and extrusion reprocessing cycles. Of the range of tensile, flexural and impact properties examined, MDF composites showed the best mean property retention after reprocessing (87%) compared to flax (72%) and glass (59%). After 1 reprocessing cycle the glass composite had higher tensile strength (56.2 MPa) compared to the MDF composite (44.4) but after 6 cycles the MDF was stronger (35.0 compared to 29.6 MPa for the glass composite). Property reductions were attributed to reduced fibre length. MDF fibres showed the lowest reduction in fibre length between 1 and 6 cycles (39%), compared to glass (51%) and flax (62%). Flax fibres showed greater increases in damage (cell wall dislocations) with reprocessing than was shown by MDF fibres.  相似文献   

4.
The aim of the present study is to investigate and compare the mechanical and thermal properties of raw jute and banana fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with banana fiber. The jute and banana fibers were prepared with various weight ratios (100/0, 75/25, 50/50, 25/75 and 0/100) and then incorporated into the epoxy matrix by moulding technique to form composites. The tensile, flexural, impact, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that addition of banana fiber in jute/epoxy composites of up to 50% by weight results in increasing the mechanical and thermal properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.  相似文献   

5.
Carbon fibre was recovered from a thermoset composite via a solvo-thermal process and used as reinforcement in low density polyethylene (LDPE). The oxidized recovered carbon fibres have shown better properties than original non-oxidized fibres. The best interactions between the continuous and dispersed phases were found using 3-aminopropyl-trimetoxysilane and experimentally synthesized polyalkenyl-polymaleic anhydride based polymers. The tensile strength of the prepared composites nearly doubled when 3-aminopropyl-trimetoxysilane was used as compatibilizer, in comparison to the composites prepared without additives. Based on infrared analysis, a chemical reaction has been proposed between –COOH groups of compatibilizers and the –OH groups of the carbon fibre surface for the best composites.  相似文献   

6.
Effect of steel fibres on mechanical properties of high-strength concrete   总被引:1,自引:0,他引:1  
Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks’ development, delay in microcracks’ propagation to macroscopic level and the improved ductility after microcracks’ formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2∅6 mm and 2∅12 mm) and three types of fibres’ configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.  相似文献   

7.
The aim of this study was to evaluate the effect of the addition of two types of nanoparticles, organomodified montmorillonite Cloisite® 30B (C-30B), and a tubular like clay, halloysite (HNT), on the morphology and thermal and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) – PHBV nanocomposites. TEM and WAXD results showed a combination of a few tactoids and a partially exfoliated structure for PHBV/C-30B nanocomposites and a good dispersion of HNT in the PHBV matrix. DSC analysis indicated a lower nucleation density with the addition of nanoparticles. Furthermore, the presence of C-30B led to the formation of double melting peaks, related to different crystalline phases. However, a higher melting temperature was obtained for PHBV/HNT nanocomposites. A general increase in the Young’s modulus was observed. However, for PHBV/C-30B nanocomposites, this enhancement was at the expense of the strain at break and impact strength, probably due to the degradation of the polymer during processing.  相似文献   

8.
Ternary composites of a biodegradable thermoplastic matrix, Mater-Bi® (MB), with various polyolefins (PP, HDPE and PS) and hemp fibres (H) were obtained by melt mixing and characterized by SEM, OM, DSC, TGA and tensile tests. The properties of composites were compared with those of MB/polyolefin and MB/H blends. Maleic anhydride functionalized polyolefins were employed as compatibilizers. Crystallization behaviour and morphology of the composites were found to be affected by the composition, phase dispersion and compatibilizer. Thermogravimetric analysis indicated that the thermal stability of the polyolefin phase and fibres was influenced by the composition and phase structure. A significant improvement of tensile modulus and strength was recorded for composites of MB with PE and PS as compared to MB/H composites. The results indicate that incorporation of polyolefins in the biodegradable matrix, compared to binary matrix/fibre system, may have significant advantages in terms of properties, processability and cost.  相似文献   

9.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

10.
ZnO nanoparticles were prepared using zinc chloride and sodium hydroxide in chitosan medium. Prepared ZnO (NZO) and commercial ZnO (CZO) was characterized by scanning electron microscopic and X-ray diffraction studies. PP/ZnO nanocomposites were prepared using 0–5 wt% of zinc oxide by melt mixing. It was then compression moulded into films. Transparency of the composite films were improved by reducing the crystallite size of ZnO. Melt flow index studies revealed that NZO increased the flow characteristics of PP while CZO decreased. X-ray diffraction studies indicated α-form of isotactic polypropylene. An increase in mechanical properties, dynamic mechanical properties and thermal stability of the composites were observed by the addition of ZnO. Uniform dispersion of the ZnO was observed in the scanning electron micrographs of the tensile fractured surface of composites.  相似文献   

11.
Exfoliated graphite nanoplates (xGnPs)/polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene (SEBS) nanocomposites have been prepared by the simple melt-compounding approach. The structural, mechanical and viscoelastic properties of these composites were studied and compared. Wide-angle X-ray diffraction (WAXD) studies indicated that the processing of nanocomposites did not change the original d-spacing of xGnPs. Scanning electron microscopy observation on the fracture surfaces of the composites shows a uniform dispersion of xGnPs throughout SEBS matrix and strong interfacial adhesion between oxidized xGnPs and the matrix, which are responsible for the considerable enhancement of mechanical properties of the composites. It is found that the addition of xGnPs particles improved both the elastic modulus and storage modulus of pure SEBS significantly and the higher the xGnPs content, the higher the modulus of the nanocomposite. Moreover, the effects of dispersed xGnPs on the microphase separation of SEBS have also been investigated using small angle X-ray scattering (SAXS).  相似文献   

12.
Natural fibers have been in a wide use since the evolution of the human race. Catching up the “Eco drive”, engineers were looking for eco-friendly alternatives for plastic fiber. In the due course many natural fibers have been tested and some were able to make their stand becoming economically viable. The present work proposes to prepare and test a Natural Fiber (Asian Palmyra) Reinforced Composite (NFRC). The study is planned in accordance to a 3-Level Factorial Design and determine the variation of Tensile Strength (TS), of short and randomly oriented Palmyra NFRC, under control parameters such as alkali treatment time, fiber length and fiber volume%. The present paper focuses to model the influence of process variables on TS through response surface methodology. The mathematical model which is developed to predict tensile strength is found statistically valid and sound within the range of the factors.  相似文献   

13.
Composites made of polypropylene and man-made cellulose fibres that are intended for injection moulding applications show potential for use in sustainable and light weight engineering with high energy absorption capacity. Due to the thermal sensitivity of the cellulose fibres, process parameters play an important role during the injection moulding process. A polypropylene and a man-made cellulose fibre were chosen for this investigation. Effective melt temperatures between 200 °C and 269 °C were used to process the compounds into test specimens. Tensile, impact and colorimetric tests, as well as an SEM analysis, and a measurement of the fibre length distribution were carried out in order to characterise the mechanical and optical properties of the composites. It was observed that the fibre length becomes shorter above 256 °C and elongation at break and Charpy strength (notched) of the composites already decrease at lower temperatures than tensile strength. A direct correlation between mechanical properties and discoloration was not observed. Therefore, melt temperatures up to 250 °C are suitable for these composites.  相似文献   

14.
In order to explore the addition effect of fluorinated graphene (FG) on the mechanical and thermal performances of polyimide (PI) matrix, FG sheets are first prepared and employed as the nanofillers to construct PI/FG nanocomposite films. The prepared film is optically transparent at low content of FG and experimental results demonstrate that the addition of FG can effectively enhance the properties of PI matrix. Especially, compared with pure PI matrix, the addition of 0.5 wt% FG in PI can endow 30.4% increase in tensile stress and 115.2% increase in elongation at break. Experimental analyses considering the morphology and microstructure are also conducted, and the results indicate that the improved mechanical properties of the PI/FG nanocomposite films are mainly attributed to the good dispersibility of FG sheets in PI host, and the effective stress transfer between the polymer and the FG.  相似文献   

15.
We report enhanced thermal and mechanical properties of carbon nanotube (CNT) composites achieved through the use of functionalized CNTs-reactive polymer linkages and three-roll milling. CNTs were functionalized with carboxyl groups and dispersed in a polymer containing an epoxide group resulting in a chemical reaction. To maximize CNT dispersion for practical usage, entangled CNTs are separated and then evenly dispersed within the polymer matrix using three horizontally positioned rotating rolls that apply a strong shear force to the composite. Consequently, accompanying with thermal stability, elastic modulus and storage modulus of such functionalized CNT/polymer composites were increased by 100% and 500% that of the untreated epoxy polymer.  相似文献   

16.
Cyclodextrin microencapsulated ammonium polyphosphate (MCAPP) was prepared by the reaction between cyclodextrin (CD) and toluene-2,4-diisocyanate (TDI) with the goal of improving the water durability of APP and preparing a novel functional flame retardants. The Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) results indicated MCAPP were successfully prepared, and the water contact angle (WCA) results indicated that cyclodextrin resulted in the transformation of hydrophilic to hydrophobic of the flame retardant surface. The MCAPP was then incorporated into the ethylene vinyl acetate copolymer (EVA) system and the effects of the MCAPP on the mechanical, combustion, thermal, interfacial adhesion and flame-retardant properties of EVA cable were investigated and compared by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), limiting oxygen index (LOI), mechanical test, cone calorimeter and UL-94 test. The characterization for the various properties of EVA composites demonstrated that cyclodextrin microencapsulation technology could enhance the interfacial adhesion, resulting in the improved mechanical, thermal stability, combustion properties and flame-retardant properties compared with those of EVA/APP/CD system. Furthermore, the water resistance experiments results demonstrate that EVA/MCAPP composites have good water durability due to the hydrophobic property of MCAPP. Above all, the microencapsulation of APP with cyclodextrin developed in this study may be a promising formulation for combining the acid source, the carbonization agent and the blowing agent in one flame retardant, and the MCAPP can solve the water resistance and the compatibility problem of the flame retardant during the industrial application.  相似文献   

17.
In the present work, the effect of lignin particles and wood flour weight fractions incorporated on friability and thermal stability of a phenolic foam was determined. In addition, the effect of hygrothermal aging on compressive mechanical properties and cell size of the materials was studied. The incorporation of lignin particles decreased friability of the phenolic foam; whereas, wood flour increased it. The influence of both reinforcements on thermal stability of the material was very low. Although the reduction in mechanical properties of reinforced foams was higher than for the unreinforced material after hygrothermal aging, modulus and strength of the reinforced foams were still superior to those of the unreinforced material. Hygrothermal aging did not influence cell size of the foams studied. The material which exhibits the best combination of features was 8.5 wt.% lignin particle-reinforced phenolic foam.  相似文献   

18.
The dynamic mechanical and thermal analysis of oil palm empty fruit bunch (EFB)/woven jute fibre (Jw) reinforced epoxy hybrid composites were carried out. The storage modulus (E′) was found to decrease with temperature in all cases, and hybrid composites had showed better values of E′ at glass transition temperature (Tg) compared to EFB and epoxy. Loss modulus showed shifts in the Tg of the polymer matrix with the addition of fibre as reinforcing phase, which indicate that fibre plays an important role in case of Tg. The Tan δ peak height was minimum for jute composites and maximum for epoxy matrix. Complex modulus variations and phase behaviour of the hybrid composites was studied by Cole-Cole analysis. Thermal analysis result indicates an increase in thermal stability of EFB composite with the incorporation of woven jute fibres. Hybridization of EFB composite with Jw fibres enhanced the dynamic mechanical and thermal properties.  相似文献   

19.
Composites of polypropylene (PP) and high density polyethylene (HDPE) reinforced with 20 wt.% of curaua fibres were prepared using a twin-screw extruder and the effect of screw rotation speed (SRS) was evaluated by measuring the output, the mechanical properties of the composites, the morphology and the fibre dimensions. Increase in SRS causes a decrease in length, diameter and aspect ratio of the fibres in both composites, due to the high shear forces acting in the molten polymer and transferred to the fibres. Consequently, the reinforcement effect of the fibres decreased, as evidenced by the flexural and tensile mechanical properties of the composites. Additionally, polymeric matrices undergoes thermo-mechanical degradation during processing, this also contributed to the changes in the mechanical properties. Comparison between the matrices showed that PP composites are less affected by changes in SRS, suffering fewer changes in fibre dimensional parameters and in the mechanical properties than HDPE composites.  相似文献   

20.
The effect of hexamethylene disilazane modified nanosilica on the dynamic mechanical analysis (DMA), crystallization, melting and thermal degradation behavior of linear low density polyethylene/ethylene vinyl acetate copolymer (LLDPE/EVA) blends are explored.Detailed DMA analysis is carried out in order to investigate the reinforcing behavior of nanosilica adopting Kerner–Nielson model. Oxidative degradation and thermal stabilities of samples are also studied by the thermogravimetery analysis. The high content of nanosilica particles results in significant shift of degradation temperature to higher temperatures in the oxygen atmosphere. This behavior might be attributed to the barrier properties of nanoparticles against oxygen and gaseous degradation products. However, incorporation of modified nanosilica into LLDPE/EVA blend is decreased the onset of degradation temperature of the unfilled system. In nitrogen atmosphere, no changes are observed in the thermal degradation range and only a reduction is documented in the onset of degradation temperature. Considering important role of onset of degradation temperature, activation energy of starting of degradation temperature is calculated utilizing Kissinger-Ozawa model in both oxygen and nitrogen atmospheres. Results showed that activation energy of degradation reaction is decreased by ∼ 20 kJ/mol. This decrease is owing to the release of modifiers from the nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号