首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of organoclay on the mechanical and thermal properties of woven carbon fiber (CF)/compatibilized polypropylene (PPc) composites is investigated. Polypropylene–organoclay hybrids nanocomposites were prepared using a maleic anhydride-modified PP oligomer (PP-g-MA) as a compatibilizer. Different weight percentages of Nanomer® I-30E nanoclay were dispersed in PP/PP-g-MA (PPc) using a melt mixing method. The PPc/organoclay nanocomposite was then used to manufacture plain woven CF/PPc nanocomposites using molding compression process. CF/PPc/organoclay composites were characterized by different techniques, namely; dynamic mechanical analysis (DMA), fracture toughness and scanning electron microscope. The results revealed that at filler content 3% of organoclay, initiation and propagation interlaminar fracture toughness in mode I were improved significantly by 64% and 67% respectively, which could be explained by SEM at given weight as well; SEM images showed that in front of the tip, fibers pull out during initiation delamination accounting for fracture toughness improvement. Dynamic mechanical analysis showed enhancement in thermomechanical properties. With addition 3 wt.% of organoclay, the glass transition temperature increased by about 6 °C compared to neat CF/PPc composite indicating better heat resistance with addition of organoclay.  相似文献   

2.
Miscibility of cyclic olefin copolymer/polyolefin elastomer (COC/POE) blends over full composition range was investigated through determination of viscoelastic characteristics both at melt and solid state as well as by direct morphological analysis using experimental and theoretical approaches. The melt viscosity, storage modulus and Han diagrams were used for analyzing the rheological behavior. It was found that the storage modulus of neat COC was higher than that of neat POE, while the modulus of the blends were in between the modulus of the neat components. Palierne and Gramspacher–Meinssner models were used in order to predict the storage and loss moduli of COC and POE. Better correspondence of Palierne model with the experimental results was observed as compared to the other model. Contrary to the Veenstra model, the calculated modulus via Coran model was reasonably in good agreement with the experimental results for blends with co-continuous morphology. Dynamic mechanical investigations have revealed that COC/POE blends were immiscible which firmly supported the morphological and rheological findings.  相似文献   

3.
The influence of an epoxy resin textile preforming binder on the thermal and rheological properties of the catalyzed Cyclic Butylene Terephthalate (CBT) oligomers was studied for the manufacturing of textile reinforced pCBT composites with bindered textile preforms. Thermal and rheological investigations were conducted with Differential Scanning Calorimetry (DSC) and plate-plate rheometry, respectively. Significant influences on both non-isothermal und isothermal crystallization of in situ polymerized Cyclic Butylene Terephthalate (pCBT) were observed due to the presence of preforming binder. The crystallization temperature and the crystallinity of pCBT polymer during cooling are both found to decrease with increasing filling fraction of preforming binder. The isothermal polymerization and crystallization process was confirmed to be influenced in the aspect of the starting time of crystallization, the crystallization rate and the crystal structures due to the addition of preforming binder. Furthermore, the processing time was found to be prolonged by adding the preforming binder.  相似文献   

4.
The aim of this study was to evaluate the effect of the addition of two types of nanoparticles, organomodified montmorillonite Cloisite® 30B (C-30B), and a tubular like clay, halloysite (HNT), on the morphology and thermal and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) – PHBV nanocomposites. TEM and WAXD results showed a combination of a few tactoids and a partially exfoliated structure for PHBV/C-30B nanocomposites and a good dispersion of HNT in the PHBV matrix. DSC analysis indicated a lower nucleation density with the addition of nanoparticles. Furthermore, the presence of C-30B led to the formation of double melting peaks, related to different crystalline phases. However, a higher melting temperature was obtained for PHBV/HNT nanocomposites. A general increase in the Young’s modulus was observed. However, for PHBV/C-30B nanocomposites, this enhancement was at the expense of the strain at break and impact strength, probably due to the degradation of the polymer during processing.  相似文献   

5.
This study presents a comparison of the effect of various wood fibre types in polylactic acid and polypropylene composites produced by melt processing. The study also reveals the reinforcing effect of pelletised wood fibres compared to conventionally used wood flour or refined fibres. Composites containing 30 wt.% of chemical pulps, thermomechanical pulp and wood flour were produced by compounding and injection moulding. Fibre morphologies were analysed before and after melt processing. The dispersion of the fibres and mechanical performance of the composites were also investigated. Fibre length was reduced during melt processing steps, reduction being higher with longer fibres. Wood fibres provided clearly higher plastic reinforcement than wood flour. Comparing the wood fibre types, TMP fibres provided the highest improvement in mechanical properties in polylactic acid composites with uniform fibre dispersion. In polypropylene composites, fibre selection is not as crucial.  相似文献   

6.
Polyether imides (PEI)/silica nanocomposites, prepared by sol–gel process, were used to modify the epoxy resin (ER), and the effect of silica particles on reaction-induced phase separation and mechanical properties of these systems were investigated. SEM images of the fracture surface of ER/PEI/silica composites showed an interesting morphology transformation with the increase of silica particle content. SEM–EDX results indicated that silica particles once formed in the PEI gradually migrated and concentrated in epoxy-rich region during the phase separation because of the better affinity between silica particles and epoxy resin. FTIR measurement and rheological test confirmed that the silica particles make the polymerization reaction of epoxy faster and the dynamic DSC results demonstrated that the activation energy of these systems decreased with the increase of the silica particles. Mechanical measurements approved that the introducing of PEI/silica nanocomposites into the epoxy could lead to great improvement of the impact strength and storage module.  相似文献   

7.
A new concept consisting of binding and ex situ toughening is proposed for manufacturing and toughening of textile reinforced pCBT composites. The present study assesses the influence of various preforming binders on interlaminar fracture properties. Interlaminar fracture toughness of textile reinforced pCBT composites was investigated under mode I and mode II deformation. A standard double cantilever beam (DCB) test and an end notched flexure (ENF) test based on a three-point bending test were applied to evaluate the interlaminar fracture toughness in mode I and mode II, respectively. The effect of binder type, filling content and preparation concept on fracture properties under the mentioned two deformation modes were discussed on the basis of morphology analysis of fracture sections with scanning electric microscopy. Flexural properties of the textile reinforced pCBT laminates prepared using the selected preforming binder were characterized for further verification of the performance of the proposed concept.  相似文献   

8.
Polypropylene (PP) composites with 5 wt% of different rigid particles (Al2O3 nanoparticles, SiO2 nanoparticles, Clay (Cloisite 20A) nanoparticles or CaCO3 microparticles) were obtained by melt mixing. Composites with different CaCO3 content were also prepared. The effect of fillers, filler content and addition of maleic anhydride grafted PP (MAPP) on the composites fracture and failure behavior was investigated. For PP/CaCO3 composites, an increasing trend of stiffness with filler loading was found while a decreasing trend of strength, ductility and fracture toughness was observed. The addition of MAPP was beneficial and detrimental to strength and ductility, respectively mainly as a result of improved interfacial adhesion. For the composites with 5 wt% of CaCO3 or Al2O3, no significant changes in tensile properties were found due to the presence of agglomerated particles. However, the PP/CaCO3 composite exhibited the best tensile behavior: the highest ductility while keeping the strength and stiffness of neat PP. In general, the composites with SiO2 or Clay, on the other hand, displayed worse tensile strength and ductility. These behaviors could be probably related to the filler ability as nucleating agent. In addition, although the incorporation of MAPP led to improved filler dispersion, it was damaging to the material fracture behavior for the composites with CaCO3, Al2O3 or Clay, as a result of a higher interfacial adhesion, the retardant effect of MAPP on PP nucleation and the lower molecular weight of the PP/MAPP blend. The PP/MAPP/SiO2 composite, on the other hand, showed slightly increased toughness respect to the composite without MAPP due to the beneficial concomitant effects of the presence of some amount of the β crystalline phase of PP and the better filler dispersion promoted by the coupling agent which favor multiple crazing. From modeling of strength, the effect of MAPP on filler dispersion and interfacial adhesion in the PP/CaCO3 composites was confirmed.  相似文献   

9.
Thermo-mechanical pulp (TMP) fibres made from beech wood were produced using increasing refiner gap widths and thus with increasing fibre length and coarseness. Fibres (60% by weight) were compounded in an internal kneading mixer using high-density polyethylene as the matrix and injection-moulded. Fibre lengths and length/width ratios were determined (a) before processing and (b) after injection-moulding and Soxhlet extraction using the optical FibreShape system. An increase in fibre length resulted in a decrease in water absorption and an improvement in flexural strength and modulus of elasticity of the wood–plastic composites (WPC). However, flexural strength of the WPC with TMP fibres was not improved compared to WPC with wood flour when maleic anhydride-grafted polyethylene (MAPE) was used as a coupling agent. After injection-moulding, differences in length of the various TMP fibre types were minor. Fibre geometry before processing strongly influences the water absorption and flexural properties of the composite. Fibre treatment with emulsified methylene diphenyl diisocyanate (EMDI) resin before compounding was shown to be equally efficient in reducing water absorption and improving flexural strength as the addition of MAPE during the compounding step.  相似文献   

10.
Heat treatment is a relatively benign modification method that is growing as an industrial process to improve hygroscopicity, dimensional stability and biological resistance of lignocellulosic fillers. There also has been increased interest in the use of lignocellulosic fillers in numerous automotive applications. This study investigated the influence of untreated and heat treated wood fillers on the mechanical and rheological properties of wood filled nylon 6 composites for possible under-the-hood applications in the automobile industry where conditions are too severe for commodity plastics to withstand. In this study, exposure of wood to high temperatures (212 °C for 8 h) improved the thermal stability and crystallinity of wood. Heat treated pine and maple filled nylon 6 composites (at 20 wt.% loading) had higher tensile strengths among all formulations and increased tensile strength by 109% and 106% compared to neat nylon 6, respectively. Flexural modulus of elasticity (FMOE) of the neat nylon 6 was 2.34 GPa. The FMOE increased by 101% and 82% with the addition of 30 wt.% heat treated pine and 20 wt.% heat treated maple, where it reached maximum values of 4.71 GPa and 4.27 GPa, respectively. The rheological properties of the composites correlated with the crystallinity of wood fillers after the heat treatment. Wood fillers with high crystallinity after heat treatment contributed to a higher storage modulus, complex viscosity and steady shear viscosity and low loss factor in the composites. This result suggests that heat treatment substantially affects the mechanical and rheological properties of wood filled nylon 6 composites. The mechanical properties and thermogravimetric analysis indicated that the heat treated wood did not show significant thermal degradation under 250 °C, suggesting that the wood-filled nylon composites could be especially relevant in thermally challenging areas such as the manufacture of under-the-hood automobile components.  相似文献   

11.
Thin kenaf/polypropylene (PP) composite sheets were manufactured via extrusion. The effects of kenaf and maleated PP (MAPP) proportions, fibre length, PP melt flow index (MFI) and die temperature on tensile, flexural, in-plane and out-of-plane shear properties were analysed by conducting experiments through ‘design of experiments’ methodology. Higher kenaf content and lower die/barrel temperatures resulted in composite sheets with higher average mechanical properties in various modes of testing. Matrix MFI appeared to significantly affect all mechanical properties. It is interesting to note that the properties of the very short-fibre composites produced are comparable to those reinforced with longer discontinuous fibres and long-fibre mats.  相似文献   

12.
This work is aimed to study the mechanical properties of basalt fibers, and their adhesion to polypropylene (PP) matrices. Single filament tensile tests were used to calculate the strength of different types of fibers, characterized by different providers and surface treatment. Single fiber fragmentation tests (SFFT) were used to calculate the critical length of the fibers, in a homopolymer PP matrix and in a maleic anhydride modified PP matrix. It was shown that the tensile strength of the fibers is not significantly influenced by the origin or the surface treatment. Only fibers without any sizing show very reduced mechanical properties. On the other hand, the tensile strength was shown to be severely dependent on the filament length. Weibull theory was used in order to calculate the fitting parameters σ0 and β, which were necessary in order to extrapolate the tensile strength to the critical length determined by SFFT. This allowed calculating the adhesion properties of the basalt fibers. It was shown that fiber–matrix adhesion is dependent on both the presence of sizing on the fiber surface, as well as on the modification of the matrix.  相似文献   

13.
The weave architecture is vital for hot compaction and the mechanical properties of self-reinforced polypropylene. Low compaction quality resulted in early damage initiation and reduced tensile strength. Interleaved films and decreased crimp in the weave architecture increased the compaction quality. The best compaction quality and tensile properties were obtained by standard fed weaves with interleaved films. The penetration impact resistance and peel strength was independent of the weave architecture. Interleaved films increased the peel strength drastically, but the impact resistance only slightly decreased. These conclusions help to select the correct weave architecture and facilitate the hot compaction process.  相似文献   

14.
Interface thickness and modulus of carbon fiber (CF) reinforced polyamide 6 (PA 6) composites with different thermal histories are characterized as 331–394 nm and 0.24–0.30 times to fiber modulus, respectively. Transverse fiber bundle (TFB) test is firstly employed for evaluating semi-crystalline PA 6 interfacial adhesion. TFB Failure mechanisms are schematically given. Besides enhanced molecular entangling on fiber surface, increased matrix toughness is also found to have a great effect on improved TFB results. Droplet micro-debonding results show that decreasing cooling rate and increasing annealing temperature both decrease interfacial shear strength (IFSS) though residual PA 6 on carbon fiber surface increases. In the end, the above data are normalized together with some previous measured parameters. It shows that quenching of the CF/PA 6 composites and subsequent annealing are shown to give similar results as slow cooling. Relationships between each other are also discussed.  相似文献   

15.
Recycled mixed post-consumer and post-industrial plastic wastes consisting of HDPE, LDPE and PP were injection moulded with short glass fibre (10–30% by weight) to produce a new generation composite materials. Intensive experimental studies were then performed to characterise the tensile, compression and flexural properties of glass fibre reinforced mixed plastics composites. With the addition of 30 wt.% of glass fibre, the strength properties and elastic modulus increased by as much as 141% and 357%, respectively. The best improvement is seen in the flexural properties due to the better orientation of the glass fibres in the longitudinal direction at the outer layers. The randomness and length of the glass fibre were accounted to modify the existing rule of mixture and fibre model analysis to reliably predict the elastic and strength properties of glass fibre reinforced mixed plastics composites.  相似文献   

16.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

17.
Intra-ply shear appears during the forming process of hot thermoplastic laminates with a uni-directional fibre reinforcement. This paper proposes a torsion bar test to characterise the longitudinal shear mechanism, which can be performed with a standard rheometer. Sensitivity analyses showed that most reliable shear property measurements can be obtained by using torsion bar specimens with a close to square cross section. The method is implemented in practise and critically evaluated. Storage and loss moduli were determined for carbon UD/PEEK specimens at high temperatures. Non-linear material behaviour was found for relatively small shear strains. The linear regime was focussed on subsequently, where the characteristics were found to be similar to that of a visco-elastic solid or weak gel, confirmed by a dominant storage modulus and a weak frequency dependency. Future work is recommended to be focussed on the large strain regime, for which this paper provides a found basis.  相似文献   

18.
Renewable resource based green biocomposites were prepared using a bacterial polyester i.e., poly(hydroxybutyrate-co-valerate) (PHBV) and natural bamboo fiber. Fabrication of the biocomposites was carried out by injection molding following extrusion compounding of PHBV and bamboo fiber with 30 or 40 wt.% fiber. The mechanical, thermo-mechanical and morphological properties of the biocomposites were evaluated. Little variation in the thermo-mechanical and impact properties was observed when the fiber content was varied. The tensile modulus of biocomposites at 40 wt.% fiber improved by 175% as compared to that of neat PHBV. The theoretical tensile modulus of the biocomposites was calculated using Christensen’s equations and compared with the experimental results. It was found to be in near approximation to the experimental data. The storage modulus was affected slightly by the variation of fiber content from 30 to 40 wt.% in biocomposites. The heat deflection temperature of PHBV increased by 9 °C at 40 wt.% of fiber reinforcement. Morphological aspects and thermal stability were studied using scanning electron microscopy and thermo-gravimetric analysis, respectively. In addition, a comparative analysis of bamboo fiber–PHBV with wood fiber–PHBV biocomposites was performed. Statistical analysis of both biocomposites was carried out by performing a two-way ANOVA on their tensile and flexural moduli in order to evaluate the effect of fiber type and content in the PHBV matrix.  相似文献   

19.
Effects of molecular weight and structure of polyamide 6 (PA6) on morphology and properties of PA6/MWCNT prepared by melt mixing were investigated. Microscopic analysis showed fine dispersion of MWCNT within low viscosity PA6s due to domination of melt infiltration into MWCNT agglomerate at low viscosity matrices with linear structure. Rheological data indicated good interfacial interaction with no percolation of MWCNT up to 2 wt% loading. DSC thermograms showed nucleating role of MWCNT on crystallization of PA6s with marginal effect on crystallinity. Experimental data supported with micromechanical model showed limited improvement on mechanical properties, but it was closely consistent with degree of dispersion of MWCNT.  相似文献   

20.
Waste polypropylene and polyethylene were blended by a twin-screw extruder with two compatibilizers (PE-g-MAH and EPDM) and an additive (O-MMT). The mechanical properties were measured firstly. By adding O-MMT, the tensile strength showed a decline while the impact strength made a promotion. The phase morphology was observed by scanning electron microscopy (SEM) to explore the fracture toughness of blends. The blend with EPDM had a better compatibilization than PE-g-MAH. X-ray diffraction was used to investigate the crystallization behavior and the result showed no change by blending. Moreover, further measurements such as thermogravimetric (TGA) and differential scanning calorimetry (DSC) were taken to show the thermal stability and crystallization temperature of the blend. Additionally, the storage modulus and loss modulus are measured by dynamic mechanical analysis (DMA), the presence of O-MMT caused the increases of the storage modulus and loss modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号