共查询到20条相似文献,搜索用时 15 毫秒
1.
Shay Oved Merav Mofaz Anat Lan Haim Einat Noga Kronfeld-Schor Dan Yamin Erez Shmueli 《Journal of the Royal Society Interface》2021,18(179)
The unprecedented restrictions imposed due to the COVID-19 pandemic altered our daily habits and severely affected our well-being and physiology. The effect of these changes is yet to be fully understood. Here, we analysed highly detailed data on 169 participants for two to six months, before and during the second COVID-19 lockdown in Israel. We extracted 12 well-being indicators from sensory data of smartwatches and from self-reported questionnaires, filled daily using a designated mobile application. We found that, in general, lockdowns resulted in significant changes in mood, sleep duration, sport duration, social encounters, resting heart rate and number of steps. Examining subpopulations, we found that younger participants (aged 20–40 years) suffered from a greater decline in mood and number of steps than older participants (aged 60–80 years). Likewise, women suffered from a higher increase in stress and reduction in social encounters than men. Younger early chronotypes did not increase their sleep duration and exhibited the highest drop in mood. Our findings underscore that while lockdowns severely impacted our well-being and physiology in general, greater damage has been identified in certain subpopulations. Accordingly, special attention should be given to younger people, who are usually not in the focus of social support, and to women. 相似文献
2.
《工程(英文)》2021,7(7):914-923
Travel restrictions and physical distancing have been implemented across the world to mitigate the coronavirus disease 2019 (COVID-19) pandemic, but studies are needed to understand their effectiveness across regions and time. Based on the population mobility metrics derived from mobile phone geolocation data across 135 countries or territories during the first wave of the pandemic in 2020, we built a metapopulation epidemiological model to measure the effect of travel and contact restrictions on containing COVID-19 outbreaks across regions. We found that if these interventions had not been deployed, the cumulative number of cases could have shown a 97-fold (interquartile range 79–116) increase, as of May 31, 2020. However, their effectiveness depended upon the timing, duration, and intensity of the interventions, with variations in case severity seen across populations, regions, and seasons. Additionally, before effective vaccines are widely available and herd immunity is achieved, our results emphasize that a certain degree of physical distancing at the relaxation of the intervention stage will likely be needed to avoid rapid resurgences and subsequent lockdowns. 相似文献
3.
《工程(英文)》2020,6(10):1108-1114
Rapid responses in the early stage of a new epidemic are crucial in outbreak control. Public holidays for outbreak control could provide a critical time window for a rapid rollout of social distancing and other control measures at a large population scale. The objective of our study was to explore the impact of the timing and duration of outbreak-control holidays on the coronavirus disease 2019 (COVID-19) epidemic spread during the early stage in China. We developed a compartment model to simulate the dynamic transmission of COVID-19 in China starting from January 2020. We projected and compared epidemic trajectories with and without an outbreak-control holiday that started during the Chinese Lunar New Year. We considered multiple scenarios of the outbreak-control holiday with different durations and starting times, and under different assumptions about viral transmission rates. We estimated the delays in days to reach certain thresholds of infections under different scenarios. Our results show that the outbreak-control holiday in China likely stalled the spread of COVID-19 for several days. The base case outbreak-control holiday (21 d for Hubei Province and 10 d for all other provinces) delayed the time to reach 100 000 confirmed infections by 7.54 d. A longer outbreak-control holiday would have had stronger effects. A nationwide outbreak-control holiday of 21 d would have delayed the time to 100 000 confirmed infections by nearly 10 d. Furthermore, we find that outbreak-control holidays that start earlier in the course of a new epidemic are more effective in stalling epidemic spread than later holidays and that additional control measures during the holidays can boost the holiday effect. In conclusion, an outbreak-control holiday can likely effectively delay the transmission of epidemics that spread through social contacts. The temporary delay in the epidemic trajectory buys time, which scientists can use to discover transmission routes and identify effective public health interventions and which governments can use to build physical infrastructure, organize medical supplies, and deploy human resources for long-term epidemic mitigation and control efforts. 相似文献
4.
Nikita Jain Vedika Gupta Chinmay Chakraborty Agam Madan Deepali Virmani Lorenzo Salas-Morera Laura Garcia-Hernandez 《计算机、材料和连续体(英文)》2022,70(1):213-231
COVID-19 has become one of the critical health issues globally, which surfaced first in latter part of the year 2019. It is the topmost concern for many nations’ governments as the contagious virus started mushrooming over adjacent regions of infected areas. In 1980, a vaccine called Bacillus Calmette-Guérin (BCG) was introduced for preventing tuberculosis and lung cancer. Countries that have made the BCG vaccine mandatory have witnessed a lesser COVID-19 fatality rate than the countries that have not made it compulsory. This paper’s initial research shows that the countries with a long-term compulsory BCG vaccination system are less affected by COVID-19 than those without a BCG vaccination system. This paper discusses analytical data patterns for medical applications regarding COVID-19 impact on countries with mandatory BCG status on fatality rates. The paper has tackled numerous analytical challenges to realize the full potential of heterogeneous data. An analogy is drawn to demonstrate how other factors can affect fatality and infection rates other than BCG vaccination only, such as age groups affected, other diseases, and stringency index. The data of Spain, Portugal, and Germany have been taken for a case study of BCG impact analysis. 相似文献
5.
Imran Ashraf Waleed S. Alnumay Rashid Ali Soojung Hur Ali Kashif Bashir Yousaf Bin Zikria 《计算机、材料和连续体(英文)》2021,67(3):3009-3044
6.
《工程(英文)》2020,6(10):1141-1146
The majority of cases infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China centered in the city of Wuhan. Despite a rapid increase in the number of cases and deaths due to the coronavirus disease 2019 (COVID-19), the epidemic was stemmed via a combination of epidemic mitigation and control measures. This study evaluates how the implementation of clinical diagnostics and universal symptom surveys contributed to epidemic control in Wuhan. We extended the susceptibles-exposed-infectious-removed (SEIR) transmission dynamics model by considering three quarantined compartments (SEIR+Q). The SEIR+Q dynamics model was fitted using the daily reported number of confirmed infections and unconfirmed cases by clinical diagnostic criteria up to February 14, 2020, in Wuhan. Applying the model to carry forward the pre-February 14 trend in Wuhan, the number of daily new diagnosed cases would be expected to drop below 100 by March 25, below 10 by April 29, and reach 0 by May 31, 2020. The observed case counts after February 14 demonstrated that the daily new cases fell below 100 by March 6, below 10 by March 11, and reached 0 by March 18, respectively, 19, 49, and 74 d earlier than model predictions. By March 30, the observed number of cumulative confirmed cases was 50 006, which was 19 951 cases fewer than the predicted count. Effective reproductive number R(t) analysis using observed frequencies showed a remarkable decline after the implementation of clinical diagnostic criteria and universal symptom surveys, which was significantly below the R(t) curve estimated by the model assuming that the pre-February 14 trend was carried forward. In conclusion, the proposed SEIR+Q dynamics model was a good fit for the epidemic data in Wuhan and explained the large increase in the number of infections during February 12–14, 2020. The implementation of clinical diagnostic criteria and universal symptom surveys contributed to a contraction in both the magnitude and the duration of the epidemic in Wuhan. 相似文献
7.
Jennifer R. Head Kristin L. Andrejko Qu Cheng Philip A. Collender Sophie Phillips Anna Boser Alexandra K. Heaney Christopher M. Hoover Sean L. Wu Graham R. Northrup Karen Click Naomi S. Bardach Joseph A. Lewnard Justin V. Remais 《Journal of the Royal Society Interface》2021,18(177)
School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K–12 closures and reopening policies on children''s social interactions and COVID-19 incidence in California''s Bay Area, we collected data on children''s social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: −985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: −1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased. 相似文献
8.
Keisuke Ejima Kwang Su Kim Shoya Iwanami Yasuhisa Fujita Ming Li Roger S. Zoh Kazuyuki Aihara Taiga Miyazaki Takaji Wakita Shingo Iwami 《Journal of the Royal Society Interface》2021,18(177)
Viral tests including polymerase chain reaction (PCR) tests are recommended to diagnose COVID-19 infection during the acute phase of infection. A test should have high sensitivity; however, the sensitivity of the PCR test is highly influenced by viral load, which changes over time. Because it is difficult to collect data before the onset of symptoms, the current literature on the sensitivity of the PCR test before symptom onset is limited. In this study, we used a viral dynamics model to track the probability of failing to detect a case of PCR testing over time, including the presymptomatic period. The model was parametrized by using longitudinal viral load data collected from 30 hospitalized patients. The probability of failing to detect a case decreased toward symptom onset, and the lowest probability was observed 2 days after symptom onset and increased afterwards. The probability on the day of symptom onset was 1.0% (95% CI: 0.5 to 1.9) and that 2 days before symptom onset was 60.2% (95% CI: 57.1 to 63.2). Our study suggests that the diagnosis of COVID-19 by PCR testing should be done carefully, especially when the test is performed before or way after symptom onset. Further study is needed of patient groups with potentially different viral dynamics, such as asymptomatic cases. 相似文献
9.
The World Health Organization declared COVID-19 a pandemic on March 11, 2020 stating that it is a worldwide danger and requires imminent preventive strategies to minimise the loss of lives. COVID-19 has now affected millions across 211 countries in the world and the numbers continue to rise. The information discharged by the WHO till June 15, 2020 reports 8,063,990 cases of COVID-19. As the world thinks about the lethal malady for which there is yet no immunization or a predefined course of drug, the nations are relentlessly working at the most ideal preventive systems to contain the infection. The Kingdom of Saudi Arabia (KSA) is additionally combating with the COVID-19 danger as the cases announced till June 15, 2020 reached the count of 132,048 with 1,011 deaths. According to the report released by the KSA on June 14, 2020, more than 4,000 cases of COVID-19 pandemic had been registered in the country. Tending to the impending requirement for successful preventive instruments to stem the fatalities caused by the disease, our examination expects to assess the severity of COVID-19 pandemic in cities of KSA. In addition, computational model for evaluating the severity of COVID-19 with the perspective of social influence factor is necessary for controlling the disease. Furthermore, a quantitative evaluation of severity associated with specific regions and cities of KSA would be a more effective reference for the healthcare sector in Saudi Arabia. Further, this paper has taken the Fuzzy Analytic Hierarchy Process (AHP) technique for quantitatively assessing the severity of COVID-19 pandemic in cities of KSA. The discoveries and the proposed structure would be a practical, expeditious and exceptionally precise evaluation system for assessing the severity of the pandemic in the cities of KSA. Hence these urban zones clearly emerge as the COVID-19 hotspots. The cities require suggestive measures of health organizations that must be introduced on a war footing basis to counter the pandemic. The analysis tabulated in our study will assist in mapping the rules and building a systematic structure that is immediate need in the cities with high severity levels due to the pandemic. 相似文献
10.
Testing asymptomatic people for SARS-CoV-2 aims to reduce COVID-19 transmission. Screening programmes’ effectiveness depends upon testing strategy, sample handling logistics, test sensitivity and individual behaviour, in addition to dynamics of viral transmission. The interaction between these factors is not fully characterized. We investigated the interaction between these factors to determine how to optimize reduction of transmission. We estimate that under idealistic assumptions 70% of transmission may be averted, but under realistic assumptions only 7% may be averted. We show that programmes that overwhelm laboratory capacity or reduce isolation of those with minor symptoms have increased transmission compared with those that do not: programmes need to be designed to avoid these issues, or they will be ineffective or even counter-productive. Our model allows optimal selection of whom to test, quantifies the balance between accuracy and timeliness, and quantifies potential impacts of behavioural interventions. We anticipate our model can be used to understand optimal screening strategies for other infectious diseases with substantially different dynamics. 相似文献
11.
《工程(英文)》2021,7(7):948-957
The coronavirus disease 2019 (COVID-19) pandemic is a global crisis, and medical systems in many countries are overwhelmed with supply shortages and increasing demands to treat patients due to the surge in cases and severe illnesses. This study aimed to assess COVID-19-related essential clinical resource demands in China, based on different scenarios involving COVID-19 spreads and interventions. We used a susceptible–exposed–infectious–hospitalized/isolated–removed (SEIHR) transmission dynamics model to estimate the number of COVID-19 infections and hospitalizations with corresponding essential healthcare resources needed. We found that, under strict non-pharmaceutical interventions (NPIs) or mass vaccination of the population, China would be able to contain community transmission and local outbreaks rapidly. However, under scenarios involving a low intensity of implemented NPIs and a small proportion of the population vaccinated, the use of a peacetime–wartime transition model would be needed for medical source stockpiles and preparations to ensure a normal functioning healthcare system. The implementation of COVID-19 vaccines and NPIs in different periods can influence the transmission of COVID-19 and subsequently affect the demand for clinical diagnosis and treatment. An increased proportion of asymptomatic infections in simulations will not reduce the demand for medical resources; however, attention must be paid to the increasing difficulty in containing COVID-19 transmission due to asymptomatic cases. This study provides evidence for emergency preparations and the adjustment of prevention and control strategies during the COVID-19 pandemic. It also provides guidance for essential healthcare investment and resource allocation. 相似文献
12.
Face masks do not completely prevent transmission of respiratory infections, but masked individuals are likely to inhale fewer infectious particles. If smaller infectious doses tend to yield milder infections, yet ultimately induce similar levels of immunity, then masking could reduce the prevalence of severe disease even if the total number of infections is unaffected. It has been suggested that this effect of masking is analogous to the pre-vaccination practice of variolation for smallpox, whereby susceptible individuals were intentionally infected with small doses of live virus (and often acquired immunity without severe disease). We present a simple epidemiological model in which mask-induced variolation causes milder infections, potentially with lower transmission rate and/or different duration. We derive relationships between the effectiveness of mask-induced variolation and important epidemiological metrics (the basic reproduction number and initial epidemic growth rate, and the peak prevalence, attack rate and equilibrium prevalence of severe infections). We illustrate our results using parameter estimates for the original SARS-CoV-2 wild-type virus, as well as the Alpha, Delta and Omicron variants. Our results suggest that if variolation is a genuine side-effect of masking, then the importance of face masks as a tool for reducing healthcare burdens from COVID-19 may be under-appreciated. 相似文献
13.
依据传染病动力学的数学建模方法和新型冠状病毒肺炎(COVID-19)的传播机理,综合考虑疫苗接种及环境中的病毒载量对COVID-19传播的影响,建立了一类SEIARW传染病模型.首先,计算了模型的控制再生数,并证明了在控制再生数大于1时,模型存在唯一的地方病平衡点.然后,通过构造Lyapunov函数证明了无病平衡点和地方病平衡点的全局稳定性.最后,绘制出了控制再生数随其参数的变化曲线图,并拟合了 2022年11月20日至12月5日期间北京显性感染者的疫情数据.数值模拟结果表明:提高疫苗接种率及疫苗效力能够降低疫情暴发的最终规模,并且加强环境中病毒的消杀能够有效减少潜伏期感染者、显性感染者和隐性感染者的人数.同时,应因地制宜地制定科学的防控策略,避免过度消毒损害人体健康和污染环境. 相似文献
14.
Ankur Dumka Parag Verma Rajesh Singh Anuj Bhardwaj Khalid Alsubhi Divya Anand Irene Delgado Noya Silvia Aparicio Obregon 《计算机、材料和连续体(英文)》2022,72(3):4453-4466
In December 2019, a group of people in Wuhan city of Hubei province of China were found to be affected by an infection called dark etiology pneumonia. The outbreak of this pneumonia infection was declared a deadly disease by the China Center for Disease Control and Prevention on January 9, 2020, named Novel Coronavirus 2019 (nCoV-2019). This nCoV-2019 is now known as COVID-19. There is a big list of infections of this coronavirus which is present in the form of a big family. This virus can cause several diseases that usually develop with a serious problem. According to the World Health Organization (WHO), 2019-nCoV has been placed as the modern generation of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) coronaviruses, so COVID-19 can repeatedly change its internal genome structure to extend its existence. Understanding and accurately predicting the mutational properties of the genome structure of COVID-19 can form a good leadership role in preventing and fighting against coronavirus. In this research paper, an analytical approach has been presented which is based on the k-means cluster technique of machine learning to find the clusters over the mutational properties of the COVID-19 viruses’ complete genome. This method would be able to act as a promising tool to monitor and track pathogenic infections in their stable and local genetics/hereditary varieties. This paper identifies five main clusters of mutations with as best in most cases in the coronavirus that could help scientists and researchers develop disease control vaccines for the transformation of coronaviruses. 相似文献
15.
The Delta variant is a major SARS-CoV-2 variant of concern first identified in India. To better understand COVID-19 pandemic dynamics and Delta, we use multiple datasets and model-inference to reconstruct COVID-19 pandemic dynamics in India during March 2020–June 2021. We further use the large discrepancy in one- and two-dose vaccination coverage in India (53% versus 23% by end of October 2021) to examine the impact of vaccination and whether prior non-Delta infection can boost vaccine effectiveness (VE). We estimate that Delta escaped immunity in 34.6% (95% CI: 0–64.2%) of individuals with prior wild-type infection and was 57.0% (95% CI: 37.9–75.6%) more infectious than wild-type SARS-CoV-2. Models assuming higher VE among non-Delta infection recoverees, particularly after the first dose, generated more accurate predictions than those assuming no such increases (best-performing VE setting: 90/95% versus 30/67% baseline for the first/second dose). Counterfactual modelling indicates that high vaccination coverage for first vaccine dose in India combined with the boosting of VE among recoverees averted around 60% of infections during July–mid-October 2021. These findings provide support to prioritizing first-dose vaccination in regions with high underlying infection rates, given continued vaccine shortages and new variant emergence. 相似文献
16.
Asadullah Shaikh Mana Saleh AlReshan Yousef Asiri Adel Sulaiman Hani Alshahrani 《计算机、材料和连续体(英文)》2021,67(1):549-576
In Wuhan, China, a novel Corona Virus (COVID-19) was detected in December 2019; it has changed the entire world and to date, the number of diagnosed cases is 38,756,2891 and 1,095,2161 people have died. This happened because a large number of people got affected and there is a lack of hospitals for COVID-19 patients. One of the precautionary measures for COVID-19 patients is isolation. To support this, there is an urgent need for a platform that makes treatment possible from a distance. Telemedicine systems have been drastically increasing in number and size over recent years. This increasing number intensifies the extensive need for telemedicine for the national healthcare system. In this paper, we present Tele-COVID which is a telemedicine application to treat COVID-19 patients from a distance. Tele-COVID is uniquely designed and implemented in Service-Oriented Architecture (SOA) to avoid the problem of interoperability, vendor lock-in, and data interchange. With the help of Tele-COVID, the treatment of patients at a distance is possible without the need for them to visit hospitals; in case of emergency, necessary services can also be provided. 相似文献
17.
Qihui Yang Don M. Gruenbacher Caterina M. Scoglio 《Journal of the Royal Society Interface》2022,19(188)
After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial. 相似文献
18.
Fawaz Jaber Alsolami Abdullah Saad Al-Malaise ALGhamdi Asif Irshad Khan Yoosef B. Abushark Abdulmohsen Almalawi Farrukh Saleem Alka Agrawal Rajeev Kumar Raees Ahmad Khan 《计算机、材料和连续体(英文)》2021,68(3):2895-2912
Ever since its outbreak in the Wuhan city of China, COVID-19 pandemic has engulfed more than 211 countries in the world, leaving a trail of unprecedented fatalities. Even more debilitating than the infection itself, were the restrictions like lockdowns and quarantine measures taken to contain the spread of Coronavirus. Such enforced alienation affected both the mental and social condition of people significantly. Social interactions and congregations are not only integral part of work life but also form the basis of human evolvement. However, COVID-19 brought all such communication to a grinding halt. Digital interactions have failed to enthuse the fervor that one enjoys in face-to-face meets. The pandemic has shoved the entire planet into an unstable state. The main focus and aim of the proposed study is to assess the impact of the pandemic on different aspects of the society in Saudi Arabia. To achieve this objective, the study analyzes two perspectives: the early approach, and the late approach of COVID-19 and the consequent effects on different aspects of the society. We used a Machine Learning based framework for the prediction of the impact of COVID-19 on the key aspects of society. Findings of this research study indicate that financial resources were the worst affected. Several countries are facing economic upheavals due to the pandemic and COVID-19 has had a considerable impact on the lives as well as the livelihoods of people. Yet the damage is not irretrievable and the world’s societies can emerge out of this setback through concerted efforts in all facets of life. 相似文献
19.
20.
Kris V. Parag Benjamin J. Cowling Christl A. Donnelly 《Journal of the Royal Society Interface》2021,18(185)
Inferring the transmission potential of an infectious disease during low-incidence periods following epidemic waves is crucial for preparedness. In such periods, scarce data may hinder existing inference methods, blurring early-warning signals essential for discriminating between the likelihoods of resurgence versus elimination. Advanced insight into whether elevating caseloads (requiring swift community-wide interventions) or local elimination (allowing controls to be relaxed or refocussed on case-importation) might occur can separate decisive from ineffective policy. By generalizing and fusing recent approaches, we propose a novel early-warning framework that maximizes the information extracted from low-incidence data to robustly infer the chances of sustained local transmission or elimination in real time, at any scale of investigation (assuming sufficiently good surveillance). Applying this framework, we decipher hidden disease-transmission signals in prolonged low-incidence COVID-19 data from New Zealand, Hong Kong and Victoria, Australia. We uncover how timely interventions associate with averting resurgent waves, support official elimination declarations and evidence the effectiveness of the rapid, adaptive COVID-19 responses employed in these regions. 相似文献