首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3' end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5'-end-3'-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in higher eukaryotes.  相似文献   

2.
Infection of cells by picornaviruses of the rhinovirus, aphthovirus, and enterovirus groups results in the shutoff of host protein synthesis but allows viral protein synthesis to proceed. Although considerable evidence suggests that this shutoff is mediated by the cleavage of eukaryotic translation initiation factor eIF4G by sequence-specific viral proteases (2A protease in the case of coxsackievirus), several experimental observations are at variance with this view. Thus, the cleavage of other cellular proteins could contribute to the shutoff of host protein synthesis and stimulation of viral protein synthesis. Recent evidence indicates that the highly conserved 70-kDa cytoplasmic poly(A)-binding protein (PABP) participates directly in translation initiation. We have now found that PABP is also proteolytically cleaved during coxsackievirus infection of HeLa cells. The cleavage of PABP correlated better over time with the host translational shutoff and onset of viral protein synthesis than did the cleavage of eIF4G. In vitro experiments with purified rabbit PABP and recombinant human PABP as well as in vivo experiments with Xenopus oocytes and recombinant Xenopus PABP demonstrate that the cleavage is catalyzed by 2A protease directly. N- and C-terminal sequencing indicates that cleavage occurs uniquely in human PABP at 482VANTSTQTM downward arrowGPRPAAAAAA500, separating the four N-terminal RNA recognition motifs (80%) from the C-terminal homodimerization domain (20%). The N-terminal cleavage product of PABP is less efficient than full-length PABP in restoring translation to a PABP-dependent rabbit reticulocyte lysate translation system. These results suggest that the cleavage of PABP may be another mechanism by which picornaviruses alter the rate and spectrum of protein synthesis.  相似文献   

3.
We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52-kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA-mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA.  相似文献   

4.
5.
6.
The role of the cap-binding complex, eIF4F, in the translation of vaccinia virus mRNAs has been analyzed within infected cells. Plasmid DNAs, which express dicistronic mRNAs containing a picornavirus internal ribosome entry site, produced within vaccinia virus-infected cells both beta-glucuronidase and a cell surface-targeted single-chain antibody (sFv). Cells expressing sFv were selected from nonexpressing cells, enabling analysis of protein synthesis specifically within the transfected cells. Coexpression of poliovirus 2A or foot-and-mouth disease virus Lb proteases, which cleaved translation initiation factor eIF4G, greatly inhibited cap-dependent protein (beta-glucuronidase) synthesis. Under these conditions, internal ribosome entry site-directed expression of sFv continued and cell selection was maintained. Furthermore, vaccinia virus protein synthesis persisted in the selected cells containing cleaved eIF4G. Thus, late vaccinia virus protein synthesis has a low requirement for the intact cap-binding complex eIF4F. This may be attributed to the short unstructured 5' noncoding regions of the vaccinia virus mRNAs, possibly aided by the presence of poly(A) at both 5' and 3' termini.  相似文献   

7.
Poly(rC) binding protein 2 (PCBP2) forms a specific ribonucleoprotein (RNP) complex with the 5'-terminal sequences of poliovirus genomic RNA, as determined by electrophoretic mobility shift assay. Mutational analysis showed that binding requires the wild-type nucleotide sequence at positions 20-25. This sequence is predicted to localize to a specific stem-loop within a cloverleaf-like secondary structure element at the 5'-terminus of the viral RNA. Addition of purified poliovirus 3CD to the PCBP2/RNA binding reaction results in the formation of a ternary complex, whose electrophoretic mobility is further retarded. These properties are consistent with those described for the unidentified cellular protein in the RNP complex described by Andino et al. (Andino R, Rieckhof GE, Achacoso PL, Baltimore D, 1993, EMBO J 12:3587-3598). Dicistronic RNAs containing mutations in the 5' cloverleaf-like structure of poliovirus that abate PCBP2 binding show a decrease in RNA replication and translation of gene products directed by the poliovirus 5' noncoding region in vitro, suggesting that the interaction of PCBP2 with these sequences performs a dual role in the virus life cycle by facilitating both viral protein synthesis and initiation of viral RNA synthesis.  相似文献   

8.
The capsid of canine parvovirus (CPV) was assayed for susceptibility to proteases and for structural variation. The natural cleavage of VP2 to VP3 in CPV full (DNA containing) particles recovered from tissue culture occurred within the sequence Arg-Asn-Glu-Arg Ala-Thr. Trypsin, chymotrypsin, bromelain, and cathepsin B all cleaved >90% of the VP2 to VP3 in full but not in empty capsids and did not digest the capsid further. Digestion with proteinase K, Pronase, papain, or subtilisin cleaved the VP2 to VP3 and also cleaved at additional internal sites, causing particle disintegration and protein degradation. Several partial digestion products produced by proteinase K or subtilisin were approximately 31-32.5 kDa, indicating cleavage within loop 3 of the capsid protein as well as other sites. Protease treatment of capsids at pH 5.5 or 7.5 did not significantly alter their susceptibility to digestion. The isoelectric point of CPV empty capsids was pH 5.3, and full capsids were 0.3 pH more acidic, but after proteolysis of VP2 to VP3, the pI of the full capsids became the same as that of the empty capsids. Antibodies against various capsid protein sequences showed the amino termini of most VP2 molecules were on the outside of full but not empty particles, that the VP1-unique sequence was internal, and that the capsid could be disintegrated by heat or urea treatment to expose the internal sequences. Capsids added to cells were localized within the cell cytoplasm in vesicles that appeared to be lysosomes. Microinjected capsids remained primarily in the cytoplasm, although a small proportion was observed to be in the nucleus after 2 h. After CPV capsids labeled with [35S]methionine were bound to cells at 0 degrees C and the cells warmed, little cleavage of VP1 or VP2 was observed even after prolonged incubation. Inoculation of cells with virus in the presence of proteinase inhibitors did not significantly reduce the infection.  相似文献   

9.
The 5' untranslated region of poliovirus RNA has been reported to possess two functional elements: (i) the 5' proximal 88 nucleotides form a cloverleaf structure implicated in positive-strand RNA synthesis during viral replication, and (ii) nucleotides 134 to at least 556 function as a highly structured internal ribosome entry segment (IRES) during cap-independent, internal initiation of translation. We show here that the IRES itself is bifunctional and contains sequences necessary for viral RNA synthesis per se. For this purpose, we used a dicistronic poliovirus RNA in which the translation of the viral non-structural (replication) proteins is uncoupled from the poliovirus IRES. In this system, RNA synthesis is readily detectable in transfected cells, even when the poliovirus IRES is inactivated by point mutation. However, deletion of the major part of the poliovirus IRES renders viral-specific RNA synthesis undetectable. Using the same system, we show that a three nucleotide deletion at position 500 in the 5' untranslated region drastically affects both translation efficiency and RNA synthesis. Furthermore, disruption of the secondary structure of the IRES around nucleotide 343 has minimal effects on IRES function, but dramatically reduces viral RNA replication. Taken together, these results provide direct evidence that sequences essential for viral RNA synthesis are located in the 3' region of the poliovirus IRES.  相似文献   

10.
Utilization of internal ribosome entry segment (IRES) structures in the 5' noncoding region (5'NCR) of picornavirus RNAs for initiation of translation requires a number of host cell factors whose distribution may vary in different cells and whose requirement may vary for different picornaviruses. We have examined the requirement of the cellular protein poly(rC) binding protein 2 (PCBP2) for hepatitis A virus (HAV) RNA translation. PCBP2 has recently been identified as a factor required for translation and replication of poliovirus (PV) RNA. PCBP2 was shown to be present in FRhK-4 cells, which are permissive for growth of HAV, as it is in HeLa cells, which support translation of HAV RNA but which have not been reported to host replication of the virus. Competition RNA mobility shift assays showed that the 5'NCR of HAV RNA competed for binding of PCBP2 with a probe representing stem-loop IV of the PV 5'NCR. The binding site on HAV RNA was mapped to nucleotides 1 to 157, which includes a pyrimidine-rich sequence. HeLa cell extracts that had been depleted of PCBP2 by passage over a PV stem-loop IV RNA affinity column supported only low levels of HAV RNA translation. Translation activity was restored upon addition of recombinant PCBP2 to the depleted extract. Removal of the 5'-terminal 138 nucleotides of the HAV RNA, or removal of the entire IRES, eliminated the dependence of HAV RNA translation on PCBP2.  相似文献   

11.
12.
13.
This study demonstrates the in vitro complementation of an RNA replication-defective lesion in poliovirus RNA by providing a replicase/polymerase precursor polypeptide [P3(wt) (wild type)] in trans. The replication-defective mutation was a phenylalanine-to-histidine change (F69H) in the hydrophobic domain of the membrane-associated viral protein 3AB. RNAs encoding wild-type forms of protein 3AB or the P3 precursor polypeptide were cotranslated with full-length poliovirus RNAs containing the F69H mutation in a HeLa cell-free translation/replication assay in an attempt to trans complement the RNA replication defect exhibited by the 3AB(F69H) lesion. Unexpectedly, generation of 3AB(wt) in trans was not able to efficiently complement the defective replication complex; however, cotranslation of the large P3(wt) precursor protein allowed rescue of RNA replication. Furthermore, P3 proteins harboring mutations that resulted in either an inactive polymerase or an inactive proteinase domain displayed differential abilities to trans complement the RNA replication defect. Our results indicate that replication proteins like 3AB may need to be delivered to the poliovirus replication complex in the form of a larger 3AB-containing protein precursor prior to complex assembly rather than as the mature viral cleavage product.  相似文献   

14.
15.
The enterovirus 2B/2C cleavage site differs from the common cleavage site motif AxxQ/G by the occurrence of either polar residues at the P1' position or large aliphatic residues at the P4 position. To study (i) the putative contribution of these aberrant residues to the stability of precursor protein 2BC, (ii) the determinants of cleavage site specificity and efficiency of 3Cpro, and (iii) the importance of efficient cleavage at this site for viral replication, a mutational analysis of the coxsackie B3 virus (CBV3) 2B/2C cleavage site (AxxQ/N) was performed. Neither replacement of the P1' asparagine with a serine or a glycine nor replacement of the P4 alanine with a valine significantly affected 2B/2C cleavage efficiency, RNA replication, or virus growth. The introduction of a P4 asparagine, as can be found at the CBV3 3C/3D cleavage site, caused a severe reduction in 2B/2C cleavage and abolished virus growth. These data support the idea that a P4 asparagine is an unfavorable residue that contributes to a slow turnover of precursor protein 3CD but argue that it is unlikely that the aberrant 2B/2C cleavage site motifs serve to regulate 2B/2C processing efficiency and protein 2BC stability. The viability of a double mutant containing a P4 asparagine and a P1' glycine demonstrated that a P1' residue can compensate for the adverse effects of an unfavorable P4 residue. Poliovirus (or poliovirus-like) 2B/2C cleavage site motifs were correctly processed by CBV 3Cpro, albeit with a reduced efficiency, and yielded viable viruses. Analysis of in vivo protein synthesis showed that mutant viruses containing poorly processed 2B/2C cleavage sites were unable to completely shut off cellular protein synthesis. The failure to inhibit host translation coincided with a reduced ability to modify membrane permeability, as measured by the sensitivity to the unpermeant translation inhibitor hygromycin B. These data suggest that a critical level of protein 2B or 2C, or both, may be required to alter membrane permeability and, possibly as a consequence, to shut off host cell translation.  相似文献   

16.
H.-H. Lu and E. Wimmer (Proc. Natl. Acad. Sci. USA 93:1412-1417, 1996) have demonstrated that the internal ribosomal entry site (IRES) of poliovirus (PV) can be functionally replaced by the related genetic element from hepatitis C virus (HCV). One important finding of this study was that open reading frame sequences 3' of the initiating AUG, corresponding to the open reading frame of the HCV core polypeptide, are required to create a viable chimeric virus. This made necessary the inclusion of a PV 3C protease (3Cpro) cleavage site for proper polyprotein processing to create the authentic N terminus of the PV capsid precursor. Chimeric PV/HCV (P/H) viruses, however, grew poorly relative to PV. The goal of this study was to determine the molecular basis of impaired replication and enhance the growth properties of this chimeric virus. Genetic modifications leading to a different proteinase (PV 2Apro) cleavage site between the HCV core sequence and the PV polyprotein (P/H701-2A) proved far superior with respect to viral protein expression, core-PV fusion polyprotein processing, plaque phenotype, and viral titer than the original prototype PV/HCV chimera containing the PV 3Cpro-specific cleavage site (P/H701). We have used this new virus model to answer two questions concerning the role of the HCV core protein in P/H chimeric viral proliferation. First, a derivative of P/H701-2A with frameshifts in the core-encoding sequence was used to demonstrate that production of the core protein was not necessary for the translation and replication of the P/H chimera. Second, a viral construct with a C-terminal truncation of 23 amino acids of the core gene was used to show that a signal sequence for signal peptidase processing, when present in the viral construct, is detrimental to P/H virus growth. The novel P/H chimera described here are suitable models for analyzing the function(s) of the HCV elements by genetic analyses in vivo and for antiviral drug discovery.  相似文献   

17.
Most eukaryotic mRNAs contain a 5'cap structure and a 3'poly(A) sequence that synergistically increase the efficiency of translation. Rotavirus mRNAs are capped, but lack poly(A) sequences. During rotavirus infection, the viral protein NSP3A is bound to the viral mRNAs 3' end. We looked for cellular proteins that could interact with NSP3A, using the two-hybrid system in yeast. Screening a CV1 cell cDNA library allowed us to isolate a partial cDNA of the human eukaryotic initiation factor 4GI (eIF4GI). The interaction of NSP3A with eIF4GI was confirmed in rotavirus infected cells by co-immunoprecipitation and in vitro with NSP3A produced in Escherichia coli. In addition, we show that the amount of poly(A) binding protein (PABP) present in eIF4F complexes decreases during rotavirus infection, even though eIF4A and eIF4E remain unaffected. PABP is removed from the eIF4F complex after incubation in vitro with the C-terminal part of NSP3A, but not with its N-terminal part produced in E.coli. These results show that a physical link between the 5' and the 3' ends of mRNA is necessary for the efficient translation of viral mRNAs and strongly support the closed loop model for the initiation of translation. These results also suggest that NSP3A, by taking the place of PABP on eIF4GI, is responsible for the shut-off of cellular protein synthesis.  相似文献   

18.
Translation initiation of hepatitis C virus (HCV) RNA occurs by internal entry of a ribosome into the 5' nontranslated region in a cap-independent manner. The HCV RNA sequence from about nucleotide 40 up to the N terminus of the coding sequence of the core protein is required for efficient internal initiation of translation, though the precise border of the HCV internal ribosomal entry site (IRES) has yet to be determined. Several cellular proteins have been proposed to direct HCV IRES-dependent translation by binding to the HCV IRES. Here we report on a novel cellular protein that specifically interacts with the 3' border of the HCV IRES in the core-coding sequence. This protein with an apparent molecular mass of 68 kDa turned out to be heterogeneous nuclear ribonucleoprotein L (hnRNP L). The binding of hnRNP L to the HCV IRES correlates with the translational efficiencies of corresponding mRNAs. This finding suggests that hnRNP L may play an important role in the translation of HCV mRNA through the IRES element.  相似文献   

19.
20.
The Saccharomyces cerevisiae TIF3 gene encodes a 436-amino acid (aa) protein that is the yeast homologue of mammalian translation Initiation factor eIF4B. Tif3p can be divided into three parts, the N-terminal region with an RNA recognition motif (RRM) (aa 1-182), followed in the middle part by a sevenfold repeat of 26 amino acids rich in basic and acidic residues (as 183-350), and a C-terminal region without homology to any known sequence (aa 351-436). We have analyzed several Tif3 proteins with deletions at their N and C termini for their ability (1) to complement a tif3delta strain in vivo, (2) to stimulate Tif3-dependent translation extracts, (3) to bind to single-stranded RNA, and (4) to catalyze RNA strand-exchange in vitro. Here we report that yeast Tif3/eIF4B contains at least two RNA binding domains able to bind to single-stranded RNA. One is located in the N-terminal region of the protein carrying the RRM, the other in the C-terminal two-thirds region of Tif3p. The RRM-containing domain and three of the seven repeat motifs are essential for RNA strand-exchange activity of Tif3p and translation in vitro and for complementation of a tif3delta strain, suggesting an important role for RNA strand-exchange activity in translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号