首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cultured mesangial cells (MC) exposed to cyclic mechanical strain or high glucose levels increase their secretion of transforming growth factor-beta1 (TGF-beta1) and collagen, suggesting possible mechanisms for the development of diabetic renal sclerosis resulting from intraglomerular hypertension and/or hyperglycemia. This study examines whether glucose interacts with mechanical strain to influence collagen metabolism and whether this change is mediated by TGF-beta. Accordingly, rat MC were grown on flexible-bottom plates in 8 or 35 mM glucose media, subjected to 2 to 5 d of cyclic stretching, and assayed for TGF-beta1 mRNA, TGF-beta1 secretion, and the incorporation of 14C-proline into free or protein-associated hydroxyproline to assess the dynamics of collagen metabolism. Stretching or high glucose exposure increased TGF-beta1 secretion twofold and TGF-beta1 mRNA levels by 30 and 45%, respectively. However, the combination of these stimuli increased secretion greater than fivefold without further elevating mRNA. In 8 mM glucose medium, stretching significantly increased MC collagen synthesis and breakdown, but did not alter accumulation, whereas those stretched in 35 mM glucose markedly increased collagen accumulation. TGF-beta neutralization significantly reduced baseline collagen synthesis, breakdown, and accumulation in low glucose, but had no significant effect on the changes induced by stretch. In contrast, the same treatment of MC in high glucose medium greatly reduced stretch-induced synthesis and breakdown of collagen and totally abolished the increase in collagen accumulation. These results indicate that TGF-beta plays a positive regulatory role in MC collagen synthesis, breakdown, and accumulation. However, in low glucose there is no stretch-induced collagen accumulation, and the effect of TGF-beta is limited to basal collagen turnover. In high glucose media, TGF-beta is a critical mediator of stretch-induced collagen synthesis and catabolism, and, most importantly, its net accumulation. These data have important implications for the pathogenesis and treatment of diabetic glomerulosclerosis.  相似文献   

2.
3.
BACKGROUND: Transforming growth factor (TGF)-beta is recognized as the final common mediator of the principal lesions of diabetic nephropathy such as renal hypertrophy and mesangial expansion. To gain better understanding of the temporal relationships between high glucose (HG) and mesangial cell (MC) TGF-beta 1 synthesis and between TGF-beta 1 and extracellular matrix (ECM) synthesis, the present study examined early and sequential effects of HG on TGF-beta 1 and fibronectin (FN) mRNA expression and protein synthesis. METHODS: Confluent primary rat MC was stimulated with 5.6 (control) or 30 (high) mM glucose after synchronizing the growth by incubation with serum-free media for 48 hours. RESULTS: Mesangial cell TGF-beta 1 mRNA expression increased significantly in six hours and continued to increase until 48 hours in response to HG. The level of TGF-beta 1 mRNA was 1.5-fold higher than that of control glucose at six hours and 1.8-fold at 48 hours. TGF-beta activity in heat-activated conditioned media under HG increased 1.5- and 1.6-fold at 24 and 48 hours, respectively, compared to control glucose. FN mRNA increased significantly at 24 and 48 hours and 1.4-fold that of control glucose at both time points. FN protein also increased 1.5-fold that of control glucose at 48 hours. Anti-TGF-beta antibody completely abolished HG-induced FN synthesis. CONCLUSIONS: The present finding demonstrate that HG stimulates TGF-beta 1 very early and prior to FN production and that HG-induced FN production is mediated by TGF-beta. This finding is consistent with the view that TGF-beta mediates increased ECM accumulation by MC under high glucose conditions.  相似文献   

4.
5.
Retinoic acid (RA) plays an important role in embryogenesis, by regulating morphogenesis, cell proliferation, differentiation, and extracellular matrix production. RA exposure on gestational day (GD) 12 in CD-1 mice results in delayed palatal shelf elevation and subsequent clefts in the secondary palate. Given the dynamic and complex nature of palate development, it is not surprising that this system is susceptible to changes in retinoid levels. There is evidence that experimental manipulation of retinoid status during development alters normal transforming growth factor-beta (TGF-beta) status. To study the role of perturbation in TGF-beta levels in RA-induced cleft palate, gravid CD-1 mice were treated with 70 mg/kg RA on GD 12. We examined changes in TGF-beta proteins and the steady-state level of TGF-beta mRNA within the first 24 hr after exposure. The interactions between RA and TGF-beta s were very complex. RA differentially regulated the mRNA and protein levels of TGF-beta 1. Changes in mRNA steady-state levels were rapid and transient in nature, indicating a direct mediation by RA. Differential regulation was evident, because RA treatment resulted in an increase in TGF-beta 1 mRNA steady levels followed by a decrease in the intracellular and extracellular forms of TGF-beta 1 protein. Moreover, the patterns of localization and levels of TGF-beta 2 and TGF-beta 3 proteins were not dramatically affected, although there was an increase in TGF-beta 3 mRNA steady-state levels. The increases in mRNA steady-state levels for TGF-beta 2 and TGF-beta 3, as for TGF-beta 1, were rapid and transient in nature, again arguing for direct mediation by RA. These data provide evidence for interactions between RA and TGF-beta s, and indicate that RA is capable of differentially regulating TGF-beta isoforms through processes involving different stages of TGF-beta synthesis and secretion. Further, changes in TGF-beta isoforms were observed prior to changes in mesenchyme morphology and must be considered as mediators of RA's effects on mesenchyme development.  相似文献   

6.
It is controversial whether osteopontin (OP) is expressed in glomeruli and involved in glomerular diseases. We examined whether the OP expression is present at gene and protein levels in cultured rat mesangial cells (MCs). Northern blotting revealed a 1.7 kb OP-mRNA expression in MCs. Fetal calf serum (FCS) and TNF-alpha increased OP gene expression in serum-starved MCs by 2.7- and 1.8-fold over 24- and 12-hour periods, respectively. PDGF, IL-1beta, and TGF-beta had little effect on OP gene expression. Western blotting detected the OP protein expression (69 kDa). FCS and TNF-alpha increased OP protein expression in serum-starved MCs over 48- and 24-hour periods, respectively. The present study clearly demonstrated the expression of OP gene and protein in cultured rat MCs. Increased OP production under serum or TNF-alpha stimulation suggests that intraglomerular OP may contribute to the development of glomerular diseases.  相似文献   

7.
Evidence has accumulated that vascular endothelial growth factor (VEGF) is expressed in the heart, and its expression is markedly increased in response to hypoxia. Recently, it was shown that pulsatile myocardial stretch in vivo markedly enhanced VEGF mRNA level in the heart. To investigate whether pulsatile mechanical stretch really stimulates VEGF expression by cardiac myocytes, using an in vitro preparation, we examined the secretion of VEGF into the culture media from cardiac myocytes subjected to pulsatile stretch. We found that pulsatile mechanical stretch induced rapid secretion of VEGF by cultured rat cardiac myocytes and mRNA expression of VEGF and VEGF receptors in the cardiac myocytes. We also found that the stretch-induced secretion of VEGF was at least in part mediated by TGF-beta. These data provide the direct evidence that mechanical overload itself can induce VEGF secretion by cardiac myocytes, which may play a role in ameliorating the relative myocardial hypoxia.  相似文献   

8.
9.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth modulator that inhibits the proliferation of many epithelial cells while stimulating the proliferation of most fibroblasts. To examine the role of TGF-beta in mouse lung chemically induced tumorigenesis, expression of the TGF-beta 1, -beta 2, and -beta 3 proteins was examined in A/J mice treated with the carcinogen urethane to induce lung adenomas using immunohistochemical staining analysis. Immunostaining for the TGF-beta ligands was detected in the epithelium of the bronchioles of untreated A/J mice with immunostaining being more intense for TGF-beta 1 than for TGF-beta 2 and TGF-beta 3; immunostaining for each TGF-beta ligand was also detected in the bronchiolar epithelium of urethane-treated A/J mice at levels similar to untreated mice. Immunostaining for the TGF-beta ligands was also detected in adenomas by 2 months; staining for TGF-beta 1, -beta 2, and -beta 3 in adenomas was detected at levels comparable with bronchioles. Following treatment with urethane for 8 months, immunostaining for TGF-beta s 1, 2, and 3 in bronchioles persisted at levels comparable to that in normal bronchioles and also persisted in adenomas, with staining for the TGF-beta ligands being very prominent on the edge of the tumor. Expression of TGF-beta 1 mRNA was examined in urethane-treated mouse lung tissue using Northern blot hybridization; here, expression of TGF-beta 1 mRNA increased 2-fold in 3-month urethane-treated lung tissue and an additional 2.5-fold by 8 months following urethane administration. Expression of TGF-beta 1 mRNA was also examined in nontumorigenic and tumorigenic mouse lung cells; in these cells, expression of TGF-beta 1 mRNA was higher in the tumorigenic cells than in the nontumorigenic cell line. These data show that there is an increase in expression of TGF-beta 1 during tumorigenesis and suggest that TGF-beta may play an important role in mouse lung carcinogenesis induced by urethane.  相似文献   

10.
Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon   总被引:1,自引:0,他引:1  
Fibrocartilage is found in tendon at sites where the tissue is subjected to transverse compressive loading in vivo. A significant characteristic of the tissue transition from tendon to fibrocartilage in bovine deep flexor tendon is increased gene expression, synthesis, and accumulation of both a large proteoglycan, aggrecan, and a small proteoglyoan, biglycan. In order to investigate the cellular events involved in this response, segments of fetal bovine deep flexor tendon were subjected in vitro to cyclic compressive load for 72 h. Following loading, the level of aggrecan mRNA in cells from loaded tissue was increased 200-450% compared to matched nonloaded tissue segments, as determined by slot-blot analysis. The level of biglycan mRNA increased 100%, and the level of versican mRNA increased 130% in the loaded tissue. The level of decorin mRNA remained virtually unchanged, while expression of alpha 1(I) collagen increased only 40%. When tissue segments were cultured in the presence of transforming growth factor (TGF)-beta 1 (1 ng/ml), the synthesis and expression of mRNA for both aggrecan and biglycan increased, whereas decorin expression was not affected. Similarity in both the direction and the pattern of the cellular response to mechanical load and TGF-beta suggested a causal relationship. Both loading of tendon segments and TGF-beta treatment increased expression of mRNA for TGF-beta by approximately 40% compared to control tissue. In addition, the amount of newly synthesized TGF-beta immunoprecipitated from extracts of loaded tissue was several-fold greater than that from nonloaded tissue. The experiments of this study support a hypothesis suggesting that one aspect of the response of cells in fetal tendon to compressive load is increased TGF-beta synthesis which, in turn, stimulates synthesis of extracellular matrix proteoglycans and leads toward fibrocartilage formation.  相似文献   

11.
We examined the altered expression of transforming growth factor-beta s in chronic renal rejection in humans, including transforming growth factor beta-1 (TGF-beta 1), TGF-beta 2, TGF-beta 3 and their receptors, transforming growth factor beta receptor type I (T beta R-I) and T beta R-II. Using Northern blot analysis and immunohistochemistry, 10 specimens of chronically rejected and 8 normal kidney samples were analyzed. By Northern blot analysis the expression of mRNA encoding TGF-beta 1, TGF-beta 2, TGF-beta 3 (P < 0.02), T beta R-I and T beta R-II (P < 0.02) was decreased in chronically rejected renal cortex samples, compared to normal controls. Immunohistochemical analysis of the normal renal cortex showed strong immunostaining for TGF-beta 1 and TGF-beta 3, and mild immunostaining for TGF-beta 2 in the proximal and distal tubulointerstitium, but no signal for any of the TGF-beta isoforms in the glomeruli or in the cortical vessels. In sharp contrast, the glomeruli and the cortical vessels of the rejected kidney specimens exhibited strong immunostaining for TGF-beta 1 and TGF-beta 3, whereas the tubules revealed a decrease in immunoreactivity. T beta RI and T beta RII immunostaining showed similar changes as observed with TGF-beta 1 and TGF-beta 3 antibodies. There was a concomitant increase in B-cell accumulation in the glomeruli, while T-cells and macrophages were diffusely abundant in the rejected samples. Since TGF-beta S are potent inducers of extracellular matrix proteins and have been shown to be involved in fibrotic disease, the increase in TGF-beta 1 and TGF-beta 3 immunoreactivity in the glomeruli suggests that there is a redistribution in TGF-beta expression in chronic renal allograft rejection. Together with changes affected by B-cell mediated immunity, the above alterations might contribute to the histopathological changes that occur in this disorder, such as intimal fibrosis, arteriosclerosis and glomerular and tubular sclerosis.  相似文献   

12.
13.
BACKGROUND: In cardiac hypertrophy, both excessive enlargement of cardiac myocytes and progressive interstitial fibrosis are well known to occur simultaneously. In the present study, to investigate the interaction between ventricular myocytes (MCs) and cardiac nonmyocytes (NMCs), mostly fibroblasts, during cardiocytes hypertrophy, we examined the change in cell size and gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in cultured MCs as markers for hypertrophy in the neonatal rat ventricular cardiac cell culture system. METHODS AND RESULTS: The size of cultured MCs significantly increased in the MC-NMC coculture. Concomitantly, secretions of ANP and BNP into culture media were significantly increased in the MC-NMC coculture compared with in the MC culture (with the possible contamination of NMC <1% of MC). Moreover, in the MC culture, enlargement of MC and an increase in ANP and BNP secretions were induced by treatment with conditioned media of the NMC culture. A considerable amount of endothelin (ET)-1 production was detected in the NMC-conditioned media. BQ-123, an ET-A receptor antagonist, and bosentan, a nonselective ET receptor antagonist, significantly blocked the hypertrophic response of MCs induced by treatment with NMC-conditioned media. Angiotensin II (Ang II) (10(-10) to 10(-6) mol/L) and transforming growth factor-beta1 (TGF-beta1) (10(-13) to 10(-9) mol/L), both of which are known to be cardiac hypertrophic factors, did not induce hypertrophy in MC culture, but both Ang II and TGF-beta1 increased the size of MCs and augmented ANP and BNP productions in the MC-NMC coculture. This hypertrophic activity of Ang II and TGF-beta1 was associated with the potentiation of ET-1 production in the MC-NMC coculture, and the effect of Ang II or TGF-beta1 on the secretions of ANP and BNP in the coculture was significantly suppressed by pretreatment with BQ-123. CONCLUSIONS: These results demonstrate that NMCs regulate MC hypertrophy at least partially via ET-1 secretion and that the interaction between MCs and NMCs plays a critical role during the process of Ang II- or TGF-beta1-induced cardiocyte hypertrophy.  相似文献   

14.
We studied the effect of tumor necrosis factor alpha (TNF-alpha) on transforming growth factor beta (TGF-beta) secretion by human breast cell lines to further characterize the antitumor effects of TNF-alpha. We found that TNF-alpha increased the secretion of TGF-beta in two established breast cancer cell lines (MCF-7 and ZR-75-1) but not in two immortalized human mammary epithelial cell lines (184B5 and MCF-10A). In MCF-7 cells, TNF-alpha increased the secretion of total TGF-beta 6.1-fold within 72 h in a dose-dependent manner. The secretion of both latent and active forms of TGF-beta was increased, and their ratio altered from 25:1 to 12:1 in the medium. TNF-alpha converted the secretory pattern of TGF-beta by MCF-7 cells from the heterodimeric form TGF-beta1.2 to the homodimeric form TGF-beta2. Immunoblot analysis under nonreducing conditions identified four molecular mass species of TGF-beta secreted in the culture media of untreated MCF-7 cells (238, 210, 40-55, and 25 kDa). Under reducing conditions, three molecular mass species of TGF-beta were identified: 88, 44, and 12 kDa. Gel filtration analysis demonstrated that the secreted TGF-beta within the range of 12-88 kDa was biologically active. TNF-alpha treatment did not alter the size of molecular mass species secreted by MCF-7 cells and did not change steady-state levels of mRNA for TGF-beta1 or TGF-beta2. These findings indicate that TNF-alpha may regulate quantitatively and qualitatively TGF-beta secretion by human breast cancer cells in vitro. The diverse biological activities of TGF-beta may also allow TNF-alpha to regulate the growth and metabolism of human mammary epithelial cells and/or stromal cells in a paracrine manner.  相似文献   

15.
16.
The effect of transforming growth factor-beta (TGF-beta) secreted by glioblastoma (T98G) cells on the secretion of interferon-gamma (IFN-gamma) by lymphokine-activated killer (LAK) cells stimulated with tumor cells was investigated in cocultures of LAK and Daudi cells supplemented with T98G culture supernatant, T98G culture supernatant preincubated with anti-TGF-beta 1 and anti-TGF-beta 2 neutralizing antibodies, anti-TGF-beta 1 and anti-TGF-beta 2 antibodies, or natural human TGF-beta 1 or recombinant human TGF-beta 2. LAK cells were incubated with anti-TGF-beta 1 and anti-TGF-beta 2 antibodies, and with T98G cells of which the supernatant contained both active and latent forms of TGF-beta 1 and TGF-beta 2, with or without neutralizing antibodies. Addition of the supernatant from T98G cells to LAK/Daudi culture caused inhibition of IFN-gamma secretion by LAK cells. The inhibition was abolished by pretreatment of the supernatants with anti-TGF-beta antibodies. Addition of TGF-beta 1 and TGF-beta 2 to the LAK/Daudi culture inhibited IFN-gamma secretion by LAK cells in a dose-dependent manner. Addition of anti-TGF-beta antibodies to the LAK culture resulted in increased IFN-gamma secretion. T98G cells failed to stimulate LAK cells to secrete more IFN-gamma. Addition of anti-TGF-beta antibodies to the LAK-T98G culture resulted in increased IFN-gamma secretion by LAK cells. These results suggest that most malignant glioma cells which secrete high levels of TGF-beta can inhibit IFN-gamma secretion by LAK cells even after tumor cell stimulation.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) stimulates the accumulation of extracellular matrix in renal and hepatic disease. Kidney glomerular mesangial cells (GMC) and liver fat-storing cells (FSC) produce latent of inactive TGF-beta. In this study, we characterized the latent TGF-beta complexes secreted by these cells. Human FSC produce a single latent TGF-beta complex, predominantly of the TGF-beta 1 isoform, whereas GMC secrete multiple complexes of latent TGF-beta, containing beta 1 and beta 2 isoforms. At least four forms were identified in GMC using ion exchange chromatography, including a peak not previously described in other cell types which eluted at 0.12 M NaCl, and predominantly of the beta 2 isoform. Both cell types secrete the latent TGF-beta 1 binding protein of 190 kDa, as part of a high molecular weight TGF-beta complex. Epidermal growth factor stimulates the secretion of latent TGF-beta and latent TGF-beta binding protein in both cell types. Secretion of latent TGF-beta in both cell types was found to be associated with secretion of decorin. This study shows that vascular pericytes from the kidney and the liver have distinctly different profiles of latent TGF-beta complexes, with GMC secreting a unique form of latent TGF-beta 2. The regulatory effect of epidermal growth factor and platelet-derived growth factor has potential implication for the pathophysiology of liver regeneration and chronic liver and kidney diseases.  相似文献   

18.
Osteoblasts produce a 100 kDa soluble form of latent transforming growth factor beta (TGF-beta) as well as a 290 kDa form containing latent TGF-beta binding protein-1 (LTBP1), which targets the latent complex to the matrix for storage. The nature of the soluble and stored forms of latent TGF-beta in chondrocytes, however, is not known. In the present study, resting zone and growth zone chondrocytes from rat costochondral cartilage were cultured to fourth passage and then examined for the presence of mRNA coding for LTBP1 protein. In addition, the matrix and media were examined for LTBP1 protein and latent TGF-beta. Northern blots, RT-PCR, and in situ hybridization showed that growth zone cells expressed higher levels of LTBP1 mRNA in vitro than resting zone cells. Immunohistochemical staining for LTBP1 revealed fine fibrillar structures around the cells and in the cell matrix. When the extracellular matrix of these cultures was digested with plasmin, LTBP1 was released, as determined by immunoprecipitation. Both active and latent TGF-beta1 were found in these digests by TGF-beta1 ELISA and Western blotting. Immunoprecipitation demonstrated that the cells also secrete LTBP1 which is not associated with latent TGF-beta, in addition to LTBP1 that is associated with the 100 kDa latent TGF-beta complex. These studies show for the first time that latent TGF-beta is present in the matrix of costochondral chondrocytes and that LTBP1 is responsible for storage of this complex in the matrix. The data suggest that chondrocytes are able to regulate both the temporal and spatial activation of latent TGF-beta, even at sites distant from the cell, in a relatively avascular environment.  相似文献   

19.
20.
OBJECTIVE: The purpose of this study was to assess the role of transforming growth factor (TGF)-beta1 in the development of diabetes-associated mesenteric vascular hypertrophy and in the antitrophic effect of angiotensin converting enzyme inhibitors. DESIGN AND METHODS: Streptozotocin-induced diabetic and control Sprague-Dawley rats were randomly allocated to treatment with the angiotensin converting enzyme inhibitor ramipril or to no treatment and were killed 1 or 3 weeks after the streptozotocin injection. Blood was collected and mesenteric vessels removed. Mesenteric vascular weight was measured and TGF-beta1 and alpha1 (type IV) collagen messenger (m)RNA levels were analysed by Northern analysis. Immunohistochemical analyses for TGF-beta1 and type IV collagen were also performed. RESULTS: The diabetic rats had increased mesenteric vessel weight at 3 weeks but not at 1 week and a concomitant rise in mesenteric TGF-beta1 and in alpha1 (type IV) collagen mRNA levels. Ramipril treatment attenuated mesenteric vessel hypertrophy and prevented the increase in TGF-beta1 and alpha1 (type IV) collagen mRNA levels after 3 weeks of diabetes. The immunohistochemical analysis revealed that diabetes was associated with increased TGF-beta1 and type IV collagen protein and extracellular matrix accumulation in mesenteric vessels, and this increase was reduced by ramipril treatment. CONCLUSIONS: These results support the concept that TGF-beta is involved in the changes associated with diabetic vascular disease, and suggest a mechanism by which angiotensin converting enzyme inhibitors exert their antitrophic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号