首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对金属棒料传统下料工艺存在断面质量差、材料利用率低、能耗高等问题,提出一种综合利用预制环状V型槽缺口效应、起裂微裂纹及扩展宏观裂纹裂尖应力集中效应的新型气动式棒料可控旋弯下料工艺,详细介绍了该下料工艺的工作原理。基于该工作原理研制了金属棒料气动式旋弯下料试验装置,利用材料力学强度理论与线弹性断裂力学理论,建立了弯矩载荷作用下金属棒料下料过程的力学模型,获得了环状“V”型槽根部微裂纹萌生载荷、扩展裂纹起裂载荷及瞬断载荷的理论计算公式。采用三种不同恒应力强度因子幅水平载荷控制曲线对φ30 mm直径的304不锈钢棒料进行下料试验研究,结合所提出的坯料断面评价方法及其评价指标,对下料所得坯料质量进行了量化评价。结果表明,保持裂尖处于恒应力强度因子幅水平,可以实现金属棒料的可控精密下料,断面质量和下料时间随幅值水平提高而降低,当裂尖处△K=0.7Kc时,坯料最终瞬断区最小。该下料工艺利用断裂力学理论建立旋弯下料机理,可以指导实际下料试验,为后续下料工艺数据库的建立提供理论支撑。  相似文献   

2.
贺占亮 《机械设计》2023,(5):108-115
为了提高自重式划船器的运动特性与力学性能,采用解析法建立了划船器的运动方程,获得了扶手、脚蹬、尾座的轨迹、速度和加速度等运动特性,并优化了划船器各杆件的长度尺寸,通过SolidWorks Motion软件对划船器进行运动学仿真。结果表明:仿真值与解析值高度吻合,验证了运动方程的准确性。经过对长度尺寸进行优化后,得到了划船器各杆件的最优长度L1=225 mm,L2=1 012 mm,L3=820 mm,L4=400 mm和L5=1 010 mm。通过SolidWorks Simulation软件对划船器进行静力学仿真,获得往复周期内划船器最大应力存在的部位与出现的时刻,并优化了各杆件的截面尺寸。结果表明:整个往复周期内,最大应力的部位始终出现在扶手连架杆上;无论是后拉还是前推,扶手连架杆最大应力始终在距胸部最远位置时达到最大。经过对截面尺寸优化后,划船器整体自身质量减小到149.9 kg,最大应力为139.5 MPa,仍低于材料的屈服强度。  相似文献   

3.
人为预制含特定几何参数的对称环状V型缺口是新型金属棒料低应力旋弯致裂精密下料的关键工艺之一,合理的缺口效应不仅降低下料所需外载荷,还能有效节约下料时间。为获取合理缺口,使用细观损伤理论和数值模拟相结合的方法,以金属棒料作为研究对象,通过修正剪切GTN模型,对缺口张角为30°、60°和90°对称时进行分析;结合ABAQUS/Explict有限元分析软件中VUMAT子程序建立修正剪切GTN模型,对修正剪切GTN模型参数进行识别,并分析了不同缺口张角损伤分布规律。结果表明,与应力集中系数和应变率集中系数相似,随着缺口张角的不断增加,缺口根部的损伤不断降低。本文提出的修正剪切GTN模型可用于新型金属棒料低应力旋弯致裂精密下料缺口的选取。  相似文献   

4.
低周疲劳精密下料新工艺及试验研究   总被引:3,自引:0,他引:3  
传统的金属棒料下料工艺存在着材料利用率低、能耗高、生产效率低以及下料断面质量差等问题。采用一种新的下料工艺-周向加载低周疲劳精密下料技术,利用V形槽的应力集中效应,促使棒料V形槽底尖端处疲劳裂纹的萌生及疲劳裂纹的快速扩展。描述周向加载低周疲劳精密下料机的工作原理。给出在低周疲劳下棒料V形槽根部裂纹是否起裂的判据。采用两种控制曲线对5种材料(20钢、H59、45钢、20Cr和LY12)的棒料进行试验研究,实现加速棒料裂纹的产生、扩展并获得良好的棒料断面质量。试验结果表明,V形槽的应力集中效应可以有效地减小棒料下料过程中的平均应力,在不断增加打击位移的同时减小冲击频率可以保证棒料裂纹的稳定扩展和断裂。  相似文献   

5.
对于单轴加载下缺口根部的应力应变,已有的理论方法能够取得很好的效果。但对于多轴加载情况,利用理论方法得到的结果并不理想。因此利用弹塑性有限元软件ANSYS计算缺口根部应力应变关系,确定危险点位置。计算过程中利用MPC单元实现弯扭耦合载荷的加载,该单元能够更好地模拟弯扭耦合加载情况,减小因加载条件引起的误差。根据计算结果对缺口根部应力应变进行分析,研究缺口深度对应力应变的影响,定量给出缺口深度与缺口根部应变分量的关系。  相似文献   

6.
用GTN(Gurson, Tvergaard, Needleman)损伤模型对不同缺口根半径的C-Mn钢缺口圆棒拉伸试样的延性断裂进行有限元模拟预测.结果表明, 当缺口根半径R≤2 mm时,GTN模型对缺口拉伸时的最大载荷Pm、起裂载荷Pi、断裂载荷Pf和断裂功E的预测值与实验值较为接近.而当R>2 mm后,预测值与实验值的偏差变大.其原因在于GTN模型是基于微孔洞长大和聚合的延性断裂机理而建立,对于根半径较小,促使孔洞长大的三向应力度较高的缺口试样较为适用.GTN模型预测的三个特征载荷,尤其是表征韧性的断裂功E的值总体上高于实验测定值,并且其预测的延性起裂位置在R≥1 mm时也与实验观察不一致.其原因是GTN模型未考虑实际材料组织中具体的夹杂物/孔洞的尺寸、形态、分布和方位对损伤演化和断裂过程的影响.  相似文献   

7.
低应力断料在精密下料中有比较突出的理论优点,且断口平整,重量误差小。采用AN-SYS有限元软件对环状V型缺口悬臂件进行了有限元分析,对不同的加载方式影响断裂的扩展进行了初步探讨。  相似文献   

8.
通过对比铝合金平面直线翻边试验及基于集中性失稳模型得到的极限应变和开裂断口,研究了汽车用铝合金滚压包边的失效机理;基于韧性断裂、塑性增量法则和混合强化准则,理论推导得到了弯曲成形极限图,并通过试验对成形极限应力图进行了验证;最后,通过数值解析的方法,研究了韧性断裂准则在滚边成形中的适用范围。结果表明:基于韧性断裂准则的成形极限图,可以用来预测铝合金滚压包边过程中产生的开裂;包边变形过程中弯曲强化效应无法忽略,适用于拉弯成形极限预测的集中性失稳理论将无法应用于滚压包边成形。  相似文献   

9.
对GCr15马氏体钢轴承内圈分别进行常规热处理和碳氮共渗+深冷+回火处理(简称碳氮共渗处理),通过对比研究了碳氮共渗对试验钢接触疲劳寿命及失效机理的影响。结果表明:碳氮共渗处理内圈试样中的碳化物比起常规热处理内圈试样更加均匀、弥散、细化,表面显微硬度和残余应力均显著提高;碳氮共渗处理内圈试样的额定寿命L10,特征寿命L63.2和中值寿命L50分别约为常规热处理内圈试样的5.3倍,6.7倍和6.6倍;常规热处理和碳氮共渗处理内圈试样的接触疲劳失效损伤机理均为剥落,碳氮共渗处理后的亚表面裂纹萌生位置更深,亚表面二次裂纹的萌生与主裂纹的扩展得到抑制,抗接触疲劳性能得到提升。  相似文献   

10.
应力强度因子K是控制脆性断裂与疲劳裂纹扩展行为的重要力学量,历史上各类裂纹试样的K因子计算方法与公式都较复杂,所得到的KK表达式为不同形式的回归式,公式的适用范围有限。针对含Ⅰ-Ⅱ混合型裂纹的试样,基于能量密度等效原理提出求解Ⅰ-Ⅱ混合型裂纹的K因子半解析模型,模型参数少,形式简单,普适性强,适用范围广。半解析模型预测的应力强度因子与文献结果和有限元结果吻合,该模型为脆性断裂与疲劳裂纹扩展行为相关研究提供了重要的理论基础。  相似文献   

11.
无铅微互连焊点力学行为尺寸效应的试验及数值模拟   总被引:6,自引:2,他引:4  
采用高精度微拉伸试验和有限元数值模拟方法研究不同微尺度的Sn-Ag-Cu无铅钎料模拟互连焊点力学行为和性能演变的尺寸效应。结果表明,当焊点高度恒定(225μm)而焊点直径逐渐减小(475~200μm)时,拉伸断裂强度显著提高且远高于体钎料的抗拉强度,断裂应变也逐渐增加;焊点的断裂位置及模式由较大直径时的界面低延性断裂转变为小直径时焊点中间部位的大变形颈缩断裂。模拟结果表明,由于焊点内力学拘束水平的不同,小直径焊点的界面应力较低且最大应力分布在焊点中间部分,易导致断裂发生在焊点中部,接头强度应较高;而大直径焊点中最大应力处于焊点界面,易导致界面金属间化合物层在较低外加应力下起裂,焊点断裂强度应较低。  相似文献   

12.
针对复合频率振动下空心轴的下料研究,建立了下料寿命与空心轴几何参数及加载状态之间的关系.推导出空心轴的V形切口尖端处应力强度因子(stress intensity factor,简称SIF),基于已搭建的双频振动系统,建立了动力学模型.在双频振动下通过绘制一维多级应力谱,得到V形切口处所受等幅名义应力,由此得到复合频率...  相似文献   

13.
针对应力下料的实际要求,介绍反旋转拉弯复合应力加载模型。提出带缺口棒料的疲劳寿命由始裂寿命和裂纹扩展寿命两部分组成的思想。在考虑V型切口棒料几何参数及材料拉伸性能影响基础上,给出裂纹起始寿命估算公式。通过分析裂纹扩展过程中应力比的变化规律,提出当量应力比概念,结合Walker公式得到反旋转弯曲载荷下带缺口棒料疲劳寿命估算公式。结合具体案例计算棒料疲劳寿命,与已有的反旋转应力下料方式实验结果对比,表明该估算公式预测结果精度高,具有较好的应用价值。  相似文献   

14.
针对万向联轴器十字轴结构安全性问题,从表面缺陷裂纹应力强度因子角度分析十字轴断裂情况。建立十字轴三维模型,运用ANSYS WorkBench对十字轴进行静力学分析,找出十字轴轴径圆弧处应力最大。然后在分析后的模型中插入半椭圆形裂纹,进行表面裂纹分析。最后,在低周疲劳试验机上进行三点弯曲试验与柔度法得到十字轴材料的平面断裂韧性。研究结果表明:在十字轴轴径处裂纹大小长半轴半径c=5mm,短半轴半径a=1mm的半椭圆形裂纹得到十字轴应力强度因子大于材料试验的KIC,十字轴出现裂纹断裂。  相似文献   

15.
为提高二/三重管法旋喷射流切割土体效率,采用Mixture多相流模型和RNG κ-ε湍流模型,开展了淹没环境下带气环旋喷射流流动模拟研究,获得了射流速度、气液两相体积分布、靶体作用压力等流场特征,并基于L16(45)正交试验设计及误差分析方法,获得了旋喷射流喷嘴关键结构参数对射流速度及其作用靶体压力的影响敏感程度与影响规律。结果表明:带气环旋喷射流能量衰减慢且集中在轴心区域,射流等速核心段长,冲击破坏土体性能好;喷嘴结构参数对射流冲击性能的影响敏感次序为:射流喷嘴出口直径>收敛角>气体喷嘴直径>气液喷嘴间距>射流喷嘴长径比;射流轴心速度及其作用靶体压力随出口直径和气体喷嘴直径的增大呈先快速增加后缓慢增加趋势,随收敛角、长径比、气液喷嘴间距的增大呈先增加后降低趋势。基于此,考虑旋喷射流设备性能,给出了最优结构参数为:射流喷嘴出口直径2.0 mm,收敛角12°或18°,长径比1,气体喷嘴直径0.9 mm,气液喷嘴间距5 mm。  相似文献   

16.
针对全断面隧道掘进机刀盘裂纹损伤及寿命预测等工程问题,提出了基于子模型技术的应力强度因子求解方法,并用含裂纹的矩形钢板对该方法进行了验证,分析了裂纹网格参数对刀盘裂纹尖端应力强度因子的收敛性影响。结果表明,钢板的应力强度因子数值和理论计算结果最大相对误差为3.6%。同时得到了保证刀盘应力强度因子求解精度和效率的裂纹单元网格参数,为结构的裂纹扩展寿命预测提供了参考。  相似文献   

17.
板料成形过程的宏观断裂行为依赖于其微观断裂机理,因此成形过程模拟中的断裂准则的准确选择对于断裂预测具有重要意义。以高强钢TRIP780板料为研究对象,设计从剪切到拉伸应力状态的五种断裂试验,结合宏观拉伸试验和扫描电子显微镜(Scanning electron microscope,SEM)分析研究不同应力状态下TRIP780板料的断裂机理,得到不同应力状态下正应力和切应力与断裂机理的关联关系,引入正应力与切应力的影响构建MMC断裂准则,应用于板料压剪应力区间的断裂行为预测。结果表明,反映断裂机理的MMC准则能适用于板料压剪和拉剪变形应力状态下断裂失效的准确预测。  相似文献   

18.
多轴疲劳损伤行为和寿命预测研究关系着复杂加载条件下金属结构件的服役安全,一直受到科学和工程领域的重视.总结多轴低周和高周疲劳试验性能测试一般过程和疲劳行为研究,重点论述多轴非比例加载对低周疲劳和高周疲劳行为的影响,受加载路径,加载载荷和材料类型的影响,非比例加载对材料低周疲劳循环硬化行为和疲劳寿命的影响有差异,对低周疲劳和高周疲劳表现的疲劳行为的影响也有差别,作用机理不尽一致.单轴本构关系通过引入非比例度因子、修正循环强度系数或将多轴加载时的应变等效为单轴应变等方式可推广到多轴疲劳领域.基于应力、应变、能量、临界面和临界面应变能密度法的多轴疲劳寿命预测模型在文中做了综述,疲劳损伤参量中包含能量项的一些多轴疲劳寿命预测方法常被用于多轴低周和高周疲劳寿命预测.缺口件多轴疲劳寿命可采用多轴损伤参量结合局部应力应变法、应力梯度法、应力场强法及临界距离法等进行预测.  相似文献   

19.
闫敬文  彭鸿  刘蕾  金光  钟兴 《光学精密工程》2014,22(9):2572-2579
基于模糊图像的退化过程、卷积模糊模型和模糊图像生成的机理,提出一种基于L0范数的正则化模糊核估计方法,解决了遥感图像重建问题中0范数难求解的难题。该方法以模糊核稀疏性为先验知识,采用对应梯度的L0范数为正则项,有效避免了细小边缘对模糊核估计的影响,使得模糊核的估计更加准确。进一步采用超拉普拉斯分布来近似图像梯度的重尾分布,利用L0.5范数正则化对模糊图像做反卷积,从而恢复出原始图像。与传统方法相比,本文方法可以准确地估计出图像的模糊核,很好地抑制恢复图像的振铃现象,有效地提升遥感图像的质量。模糊图像以及各方法重构图像在同一刀刃下的调制传递函数(MTF)曲线显示,本文方法的MTF曲线得到了较好的提升。  相似文献   

20.
针对金属棒料低应力分离过程中裂纹萌生扩展速率低的问题,提出一种基于双频振动的加载方法,探究带V形槽7A09铝合金棒料的断裂行为。研究了双频振动对带V形槽金属棒料裂纹萌生扩展的作用机理,通过研发双频激振装置,对带V形槽7A09铝合金棒料进行了实验研究。实验结果表明,相对于单频振动加载方法,双频振动载荷能够大幅缩短带V形槽7A09铝合金棒料的分离时间,有效提高裂纹萌生扩展的速率与稳定性,棒料断面几何精度高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号