首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前工业界对高精度微结构功能表面玻璃元件,比如作为高性能二极管激光器准直透镜关键元件的圆柱槽阵列微结构功能表面玻璃元件的需求日趋增加,而其微结构表面质量的优劣也会直接影响激光器输出功率的大小。该类元件能否很好的实现其特定的光学功能取决于玻璃模压用具有微结构表面的模具(如碳化硅陶瓷等)最终加工质量,但由于碳化硅等陶瓷的超硬材料属性导致其微结构表面在精密磨削后还需要进行后续的抛光加工以达到使用精度要求。因此针对精密磨削后的无压烧结碳化硅(SSi C)微结构表面展开原位化学机械抛光(CMP)试验,试验结果表明,微结构表面粗糙度Ra及面形精度PV由磨削后的71.8 nm和2.14μm降低到了抛光后的7.7 nm和0.46μm;抛光后微结构尖角处形貌完整无破损,但尖角圆弧半径R有所扩大,由磨削后的8.082μm增大到9.294μm;微结构亚表面裂纹深度经抛光后由磨削后的5μm左右降低至1μm左右,从而有效地提高了模具精度。  相似文献   

2.
数控非接触式超光滑光学元件加工机床的设计   总被引:1,自引:0,他引:1  
基于数控技术,提出了一种非接触式光学元件表面超光滑液体抛光方法.通过磨头中心孔为抛光表面提供抛光液,抛光液在磨头自转的带动下与光学元件表面相互作用,实现光学元件表面材料的微量去除,利用计算机控制抛光磨头的运动轨迹完成对光学元件表面的抛光.根据上述原理,设计和研制了数控非接触表面超光滑光学元件加工机床样机,样机直线运动轴最低进给速度为0.000 1 m/s,定位精度为0.008 mm;摆动轴最低转速为0.002 8 r/min,定位精度为15″.抛光实验结果表明,经过20 min的超光滑加工,熔石英材质光学元件上两点的表面粗糙度Ra值分别由加工前的1.03 nm和0.92 nm提高到加工后的0.48 nm和0.44 nm,显著提高了加工精度.  相似文献   

3.
考虑用CaF_2材料制作投影光刻物镜可以明显提高其性能指标,本文研究了CaF_2材料加工工艺的全流程,以实现CaF_2材料的全频段高精度加工。首先,利用沥青抛光膜和金刚石微粉使CaF_2元件有较好的面形和表面质量。然后,优化转速、抛光盘移动范围、压力等加工工艺参数,并使用硅溶胶溶液抛光进一步降低CaF_2元件的高频误差,逐渐去除加工中产生的划痕并且获得极小中频误差(Zernike残差)和高频粗糙度。最后,在不改变CaF_2元件高频误差的同时利用离子束加工精修元件面形。对100mm口径氟化钙材料平面进行了加工和测试。结果表明:其Zernike 37项拟合面形误差RMS值可达0.39nm,Zernike残差RMS值为0.43nm,高频粗糙度均值为0.31nm,实现了对CaF_2元件的亚纳米精度加工,为研发高性能深紫外投影光刻物镜奠定了良好基础。  相似文献   

4.
气囊抛光过程的运动精度控制   总被引:1,自引:0,他引:1  
针对用于球面、非球面光学元件超精密光学加工的气囊抛光技术,提出了一套控制抛光过程中气囊运动精度的方法。该方法通过控制加工单元的温度,保证抛光过程中设备运动精度达到50μm;使用坐标传递法,使检测数据二维方向对准不确定度达到0.30~0.70mm。另外,基于磨头去除量估计与反馈修正法,提高精抛过程面形误差收敛效率。最后,通过磨头探测校准法,将磨头与加工工件法向位置精度提高至10μm。实际抛光实验显示:使用运动精度控制法在280mm口径的平面精密抛光中获得的面形加工精度为0.8nm(RMS),在160mm口径的凹球面精密抛光中获得的面形加工结果为1.1nm(RMS),实现了超高精度面形修正的目的,为超高精度球面、非球面光学元件加工提供了一套行之有效的方法。该方法同样适用于其他接触式小磨头数控抛光方法。  相似文献   

5.
针对单轴抛光机面形控制难度大、较多依赖人工经验,无法满足光学元件激增的数量和精度需求的问题,提出研制一种新型超精密环形抛光机床。首先引入抛光盘跳动为变量构建基于Preston公式和赫兹接触理论的材料去除模型;模型仿真分析表明抛光盘跳动误差变化会导致材料不均匀去除,而主轴跳动误差和导轨直线误差会直接影响抛光盘的面形修正和测量精度。然后基于此结论,利用静态、模态、谐响应分析对机床整体布局和横梁支撑形式进行优化;同时设计气体静压导轨和主轴以提高直线运动精度和主轴回转精度。最后为了验证机床精度和加工指标,采用LK-G5000激光传感器检测导轨和转台的运动误差分别优于1.2μm/400 mm和0.4μm。对?300 mm的UBK7光学元件进行抛光,8小时后粗糙度和PV值分别优于Ra0.56 nm和1/10λ。结果表明:所研制的超精密环形抛光机床达到了设计要求。  相似文献   

6.
磁流变抛光去除模型及驻留时间算法研究   总被引:1,自引:0,他引:1  
建立了磁流变抛光球形光学元件的去除模型,分析了影响磁流变抛光的因素,提出了驻留时间算法,用其仿真加工球形工件,结果表明该算法是收敛的,并用磁流变抛光加工了R41.3mm、口径20mm的K9光学玻璃球面工件,获得了Rms8.441nm、PV57.911nm的面形精度。  相似文献   

7.
复杂曲面碳化钨密封零件精密磨削实验研究   总被引:1,自引:1,他引:0  
碳化钨为典型的碳化物陶瓷材料,具有广泛的应用前景。其具有高硬度、高脆性及很高的耐磨性,所以难以采用传统的车削、铣削等工艺进行加工。在碳化钨工件上加工出复杂的曲面结构,并保证工件的面形精度及表面粗糙度则更加困难。为获得高表面质量的复杂曲面碳化钨密封工件,采用杯形金刚石砂轮单点磨削的方法实现碳化钨材料加工;设计压电陶瓷驱动柔性铰链微进给机构精确控制砂轮切深方向运动,从而实现复杂曲面加工的成形运动;探索最优工艺参数获得高面形精度和低表面粗糙度。分析了碳化钨磨削加工材料去除机理,以此指导柔性铰链精密进给机构设计,并规划杯形砂轮改善面形精度及表面粗糙度的磨削方法。实验结果表明:采用青铜基及树脂基杯形砂轮以45°倾角单点磨削碳化钨样件,其表面粗糙度值Ra由初始的500nm减小到15nm,面形精度RV值达到0.25μm。该装置可以在普通机床上磨削出高质量的碳化钨工件。  相似文献   

8.
全口径环形抛光是加工大口径平面光学元件的关键技术之一,其瓶颈问题是元件面形的高效高精度控制。通过研究元件面形的影响因素及其控制方法从而提升其确定性控制水平。围绕影响面形误差的运动速度、抛光盘表面形状误差和钝化状态等关键工艺因素,建立基于运动轨迹有效弧长的环形抛光运动学模型,揭示了抛光盘表面开槽槽型对面形误差的影响规律;提出了采用位移传感器以螺旋路径扫描抛光盘表面并通过插值算法生成其形状误差的方法,建立基于小工具的子口径修正方法,实现了抛光盘形状误差的在位定量修正;提出抛光盘表面钝化状态的监测方法,研究了抛光盘表面钝化状态对面形误差的影响规律。结果表明:抛光盘表面开槽采用环形槽时元件表面容易产生环带特征,采用径向槽、方形槽和螺旋槽时元件表面较为匀滑;通过在位定量检测和修正抛光盘形状误差,可显著提升元件的面形精度;随着抛光盘表面的逐渐钝化,元件面形逐渐恶化。在研制的5 m直径大口径环形抛光机床上加工800 mm×400 mm×100mm平面元件的面形PV值优于λ/6(λ=632.8 nm),提升了元件的面形控制效率和精度。  相似文献   

9.
针对小特征尺寸连续位相板中频段成分分布广、误差梯度大的面形特点,分析了离子束修形技术加工连续位相板过程中影响加工精度的几种因素,包括扫描步距、材料去除方式、定位精度和材料去除量求解。分析指出:根据采样定理确定去除函数的扫描步距可实现对不同尺寸特征单元的有效加工;进一步优化材料去除方式能够确保修形过程中驻留时间的平稳运行,实现全频段误差一致收敛。另外,采用面形匹配方法对测量误差进行校正实验,可获取准确的面形材料去除量;而采用提高去除函数定位精度的方法可显著提升小尺寸特征单元的加工精度。基于研究结果,在消除各种工艺误差的基础上,采用离子束修形技术对特征尺寸小至1.5mm,面形峰谷值小于200nm,面形梯度高至1.8μm/cm的连续位相板进行了高精度加工,结果显示:加工面形与理论面形的匹配精度达到8.1nm(RMS),证实了误差分析的准确性。  相似文献   

10.
高精度光学表面磁流变修形技术研究   总被引:2,自引:0,他引:2  
作为一种确定性子孔径的光学加工方法,磁流变抛光具有高精度、高效率、高表面质量以及无亚表面损伤的特点,有能力对各种形状的光学零件进行加工。本文系统的介绍了磁流变抛光高精度光学表面的关键技术,并采用自研的KDMRF-1000磁流变抛光机床和KDMRW-1水基磁流变抛光液对直径100mm的K4材料平面反射镜和直径200mm的K9材料球面反射镜进行加工实验。样件一面形收敛到PV值55.3nm,面形RMS值5.5nm;样件二面形收敛到PV值40.5nm,面形RMS值5nm。样件的表面粗糙度均有显著改善。  相似文献   

11.
张利鹏  杨辉  鲍龙祥  李静 《光学精密工程》2014,22(12):3303-3309
提出了一种新的进动气囊抛光驻留时间算法,用于实现高精度的光学玻璃零件的加工。首先,通过抛光工艺试验确定抛光去除率函数;在矩阵迭代算法的基础上,给定一个合适的驻留时间初值函数。然后,采用分层阈值去除法进行驻留时间的优化求解,并加上残余误差方差最小的判定条件,从而得到完整的驻留时间函数。该算法适用于非球面、自由曲面等光学玻璃元件的抛光加工。用MATLAB对残余面形误差进行了仿真,仿真结果表明残余误差精度PV值可以收敛到0.1μm左右。最后,对光学玻璃平面进行了抛光。实际抛光后,该玻璃表面粗糙度Ra从抛光前的0.159μm减小到0.024μm,面形精度PV值由抛光前的0.756μm减小到0.158μm。得到的结果验证了提出驻留时间算法的合理性,表明该算法可为以后进行复杂面形工件的气囊抛光研究提供理论基础。  相似文献   

12.
洪小兰  姜晨 《光学精密工程》2023,(14):2071-2079
脉冲压缩光栅是实现高能量激光的核心光学元器件,其制造过程中产生的表面污染物和微结构缺陷成为限制高功率激光系统发展的技术瓶颈,为了提升光栅的激光诱导损伤阈值,提出利用磁性复合流体进行脉冲压缩光栅(PCG)后处理抛光研究。对抛光前后光栅样品的微观结构,表面形貌、表面粗糙度、衍射效率和激光诱导损伤阈值等参数进行测量,进行抛光前后光栅表面质量和光栅性能的评估。研究发现,磁性复合流体抛光能够在不破坏实际光栅结构的前提下抑制加工过程产生的毛刺,微结构缺陷等;经3 min抛光后,光栅顶部表面粗糙度从21.36 nm下降到3.73 nm;激光诱导损伤阈值从2.8 J/cm2提高到3.8 J/cm2,抗激光损伤性能提升35.7%,且不影响衍射效率。实验结果表明:磁性复合流体抛光是一种可以提高光栅元件表面质量,提升光栅元件光学性能的有效方法。  相似文献   

13.
气囊抛光去除函数的数值仿真与试验研究   总被引:2,自引:1,他引:1  
为提高光学元件的面形精度,提高加工效率,对超精密气囊抛光方法的去除函数进行了理论和试验研究.通过分析气囊抛光的原理,以Preston方程为基础,应用运动学原理推导了气囊抛光"进动"运动的材料去除函数,利用计算机仿真的方法,得到近似高斯分布的去除函数,通过仿真分析几个主要参数对"进动"抛光运动去除特性的影响,总结得到三点气囊抛光工艺过程中重要的结论.通过在一台超精密气囊式智能抛光机上的试验对比,两者吻合很好,并得到面形精度 RMS=0.012 6 μm的超精密的光滑表面,为开展气囊抛光的工艺研究提供了理论依据.  相似文献   

14.
多模式组合抛光技术在光学加工中的应用   总被引:1,自引:0,他引:1  
介绍了将经典抛光方法与数控加工技术有机结合的多模式组合抛光技术.描述了多模式组合抛光的关键技术之一,材料去除率仿真模型的建立方法.通过设置抛光盘因子和元件因子,多模式组合抛光的材料去除模型不仅包含抛光模式、速度等加工参数,还将抛光模形状、边角效应、元件面形误差等因素对材料去除的影响一并考虑入内,可以根据抛光阶段的不同,...  相似文献   

15.
计时鸣  蒋鑫鑫  金明生 《机电工程》2014,(4):409-413,430
针对气压砂轮抛光中通过驻留时间控制材料去除量需在模具表面多去除一层材料及抛光效率低等问题,提出了一种基于时变去除函数的抛光材料去除量控制方法。该方法以抛光工具所能达到的最大进给速度在模具表面进行抛光加工,无需多去除材料,通过实时改变抛光工具的去除能力以适应面形误差的变化,极大地缩短了抛光时间;开展了抛光材料去除过程研究,建立了气压砂轮抛光工具进给速度与面形数据和抛光去除函数之间的关系,提出了抛光过程时间的计算方法;针对时变去除能力超出抛光工具最大去除能力的问题,提出了在气压砂轮抛光中对需去除的材料进行分层抛光的思想。最后,通过抛光过程时间对材料去除量控制的两种方法进行了对比分析。研究结果表明,在气压砂轮抛光中采用时变去除函数来控制材料去除量能极大地提高抛光效率。  相似文献   

16.
大气等离子体射流加工由于其化学刻蚀的加工原理,材料去除速率极易受温度影响,然而加工区域内温度波动造成的面形误差目前仍难以有效预测与抑制。为了补偿大气离子体射流加工中热效应引起的非线性加工误差,搭建了可在线测量加工区域温度的大气等离子体射流加工系统,分析了加工过程中全局和局部热效应对材料去除速率的影响规律,建立了考虑热效应的时变非线性去除函数模型及标定方法,依据加工区域温度的实时测量数据,实现了基于驻留时间动态调整的大气等离子体射流加工热误差在线补偿技术。熔石英光学元件的修形加工实验结果表明,所提出的方法有效补偿了加工过程中由温度波动引起的面形误差,材料去除量误差PV从362.71 nm降低至132.25 nm,提升63.54%,RMS从90.02 nm降低至33.45 nm,提升62.84%。研究结果为提升大气等离子体加工的修形精度提供了新的思路与参考。  相似文献   

17.
超光滑光学表面加工技术   总被引:14,自引:5,他引:14  
现代科学技术的发展,在许多领域中提出了加工超光滑表面的要求。这种表面不仅要具备较高的面形精度和极低的表面粗糙度,同时要具有完整的表面晶格排布,消除加工损伤层。近年来国际出现了不少成功的超光滑表面加工技术,可以实现表面粗糙度小于1nm,面形精度优于30nm.本文介绍了超光滑表面的主要应用领域;从去除机理的角度讨论了BFP抛光、Teflon抛光、离子束加工、PACE加工、浮法抛光、延展性磨削等六种有代表性的超光滑表面加工技术;并对国内情况作了简单分析。  相似文献   

18.
针对传统光学加工技术难于精确测量和控制亚表面损伤的特点,提出用磁流变抛光替代研磨工序并直接衔接磨削的新工艺流程。采用自行研制的磁流变抛光机床KDMRF-1000和水基磁流变抛光液KDMRW-2进行了磁流变抛光去除磨削亚表面损伤层的实验研究。结果显示,直径为100mm的K9材料平面玻璃,经过156min的磁流变粗抛,去除了50μm深度的亚表面损伤层,表面粗糙度Ra值进一步提升至0.926nm,经过17.5min磁流变精抛,去除玻璃表面200nm厚的材料,并消除磁流变粗抛产生的抛光纹路,表面粗糙度Ra值提升至0.575nm。由此表明,应用磁流变抛光可以高效消除磨削产生的亚表面损伤层,提出的新工艺流程可以实现近零亚表面损伤和纳米级精度抛光两个工艺目标。  相似文献   

19.
无结合剂碳化钨非球面模具的超精密磨削加工   总被引:1,自引:0,他引:1  
针对无结合剂碳化钨材料,进行非球面模具的法向磨削试验研究。分析法向磨削非球面时的砂轮对刀误差对磨削精度的影响,研究无结合剂碳化钨非球面模具的磨削表面形貌特征和最终表面质量,优化误差补偿工艺,并利用聚焦离子束对磨削后的非球面亚表层损伤进行成像分析。研究结果表明利用推导的砂轮对刀误差方程,可以在磨削加工前对砂轮的初始位置进行精确调整,提高磨削加工精度。磨削后无结合剂碳化钨非球面模具不同区域的表面质量不同,距非球面中心越近,磨削质量越好,距中心越远,磨削质量越差。经过3次误差补偿磨削加工后,最终的无结合剂碳化钨非球面模具的面形精度误差均小于0.3μm(PV值),表面粗糙度平均值小于8 nm(Ra值),亚表层没有明显的裂纹产生。  相似文献   

20.
Yb∶LuScO_3晶体作为固体激光器的新型增益介质,其面形和表面质量严重影响激光器的光束质量,因此探索Yb∶LuScO_3晶体的超精度光学加工工艺参数具有重要意义。本文系统开展了Yb∶LuScO_3晶体超精密光学加工的工艺参数研究,针对Yb∶LuScO_3晶体在加工过程中容易破裂和表面质量较差的问题,提出了拼接上盘和树脂铜盘抛光垫的关键技术。首先,使用COMSOL Multiphysics有限元软件对拼接工艺中选取的不同保护垫料的应力进行仿真。接着,研磨阶段逐步减小B_4C磨料的粒径。然后,粗糙阶段使用树脂铜盘作为抛光垫,并对树脂铜盘抛光垫的作用进行了分析。最后,使用激光二极管泵浦加工好的样品进行激光输出实验。实验结果表明:基于该技术加工后的晶体表面粗糙度RMS=0.296 nm,面形精度PV=53 nm。在1 086 nm处获得了8.3 W的连续激光输出,斜效率为58%。该加工方法可以广泛应用于Yb∶LuScO_3晶体的高精度加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号