首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用借鉴遗传算法的编码、交叉和变异操作的遗传微粒群算法对旅行商问题进行求解。针对微粒群算法的进化机制,设计了满足三条染色体交叉需要的分步式交叉算子。对多个基准测试实例的仿真计算表明,算法能有效的求解旅行商问题,在求解不同规模旅行商问题上性能均优于标准微粒群算法和离散二进制版本的微粒群算法。  相似文献   

2.
一种求解背包问题的混合遗传微粒群算法   总被引:1,自引:0,他引:1  
背包问题是计算科学理论中一个著名的NP-hard问题,也是典型的组合优化问题,在物流系统的库存分配和货物装载等方面都有非常重要的应用.采用借鉴遗传算法的编码、交叉和变异的遗传微粒群算法对背包问题进行求解.为了增强遗传微粒群算法的搜索性能,将基于自学习规则的启发式算法与遗传微粒群算法相结合得到混合遗传算法用于求解背包问题.对多个标准测试实例的仿真计算表明,该算法能有效求解KP问题.  相似文献   

3.
针对带容量约束的车辆路径问题(CVRP),提出了一种带分裂机制的帝国竞争算法进行求解。首先,结合CVRP的特性,采用基于贪婪准则的编解码策略实现算法空间到解空间的转换。其次,提出帝国分裂策略来增强算法的全局搜索能力,并结合2-Opt提高算法的局部搜索能力。最后,通过25个基准算例的仿真实验表明:所提算法能有效求解CVRP,所有算例的优化误差不超过1.0%;与已有的帝国竞争算法、粒子群算法、遗传算法、布谷鸟搜索算法相比,所提算法的求解效率更高。  相似文献   

4.
微粒群优化算法   总被引:39,自引:1,他引:39  
介绍了微粒群优化(PSO)算法的原理、算法流程、算法参数及其对算法性能的影响.讨论了各种改进的PSO算法.分析了多相微粒群优化算法(MPPSO)的原理、算法方程、算法参数及其对算法性能的影响.最后归纳了PSO算法的应用概况,并就PSO算法进一步的研究工作进行了探讨和展望.  相似文献   

5.
微粒群算法是一种群体智能优化算法,它具有个体数目少、计算简单、鲁棒性好等优点;其缺点是容易陷入局部极值点,进化后期收敛速度慢且精度较差。本文对微粒群算法的基本原理、参数设置及优化进行了介绍,并对0-1背包问题的模型及目前的解决方法进行了简介。  相似文献   

6.
改进微粒群优化算法求解旅行商问题   总被引:21,自引:2,他引:21  
对微粒群优化算法的速度位置算式进行了改进,提出一种改进的微粒群优化算法。该算法符合组合优化问题的特点,在求解旅行商问题上有较高的搜索效率。将改进的PSO算法分别应用于14点的TSP问题以及中国旅行商问题中,该算法在较短时间内获得了目前已知的最好解。  相似文献   

7.
微粒群算法是一种群体智能优化算法,它具有个体数目少、计算简单、鲁棒性好等优点;其缺点是容易陷入局部极值点,进化后期收敛速度慢且精度较差.本文对微粒群算法的基本原理、参数设置及优化进行了介绍,并对0-1背包问题的模型及目前的解决方法进行了简介.  相似文献   

8.
基于离散微粒群算法求解背包问题研究   总被引:1,自引:0,他引:1  
微粒群算法(PSO)是一种新的演化算法,主要用于求解数值优化问题.基于离散微粒群算法(DPSO)分别与处理约束问题的罚函数法和贪心变换方法相结合,提出了求解背包问题的两个算法:基于罚函数策略的离散微粒群算法(PFDPSO)和基于贪心变换策略的离散微粒群算法(GDPSO).通过将这两个算法与文献[7]中的混合微粒群算法(Hybrid_PSO)进行数值计算比较发现:对于求解大规模的背包问题,GDPSO非常优秀,其求解能力优于Hybrid_PSO和PFDPSO,是求解背包问题的一种非常有效的方法.  相似文献   

9.
为解决定制物流调度优化问题,给出一种基于微粒群优化的物流调度算法。设计了定制物流调度问题的数学模型,给出了动态微粒群优化算法的框架,并在仿真环境下进行了实验验证。实验结果表明,该算法能够有效地解决定制物流调度问题,具有较好的应用价值。  相似文献   

10.
标准微粒群算法(PSO)通常被用于求解连续优化的问题,很少被用于离散问题的优化求解,如作业车间调度问题(JSP)。因此,针对PSO算法易早熟、收敛慢等缺点提出一种求解作业车间调度问题(JSP)的混合微粒群算法。算法将微粒群算法、遗传算法(GA)、模拟退火(SA)算法相结合,既增强了算法的局部搜索能力,降低了算法对参数的依赖,同时改善了PSO算法和GA算法易早熟的缺点。对经典JSP问题的仿真实验表明:与标准微粒群算法相比,该算法不仅能有效避免算法中的早熟问题,并且算法的全局收敛性得到了显著提高。  相似文献   

11.
将粒子群算法和禁忌搜索算法相结合构造禁忌搜索粒子群算法。提出一种对粒子群算法中全局最优解进行禁忌搜索的混合算法,扩展了粒子群算法进化方式。将其用于车辆路径优化问题求解。与基本粒子群算法相比较,结合禁忌搜索算法的粒子群算法明显提高了算法收敛速度和优化性能。  相似文献   

12.
PSO和GA的对比及其混合算法的研究进展   总被引:1,自引:17,他引:1  
系统地介绍了微粒群优化算法(PSO)和遗传算法(GA)的基本原理、发展和应用的状况,比较了两者的原理特点,列举了各种微粒群优化算法和遗传算法的改进算法。介绍和总结目前出现的两种算法思想结合的局部混合与全局混合两种方式,并用图表给出了说明。分析了两种混合方式的局限性,提出对具体问题找出计算速度和计算精度的平衡点来改进算法。最后做了总结和展望,指出微粒群算法的应用需进一步拓展,和其他算法结合是提高其性能的主要方向。  相似文献   

13.
为了进一步提高立体车库存取效率,提出一种改进混合粒子群算法,应用于立体车库存取策略时间模型,寻找存取车最优时间和最优排序。该算法主要在粒子群算法前期引入遗传算法,改善全局搜索能力,后期引入模拟退火算法弥补其局部搜索能力弱的特点。与目前应用于立体车库存取车调度的遗传算法相比,改进混合粒子群算法存取效率提高了24.5%~36.07%,并优于其他车库调度算法,提高了车库运营效率。  相似文献   

14.
本文提出了用于解决车间作业调度问题的混合自适应变异粒子群算法,该算法在运行的过程中根据群体适应度方差以及当前最优解的大小来确定当前最佳粒子的变异概率,利用遗传算法思想对粒子进行选择、交叉操作,并将模拟退火算法的优点融入到AMPSO算法中。仿真结果表明,混合AMPSO算法能够有效地、高质量地解决作业车间调度问题。  相似文献   

15.
求解TSP问题的自逃逸混合离散粒子群算法研究   总被引:3,自引:0,他引:3  
通过对旅行商问题(TSP)局部最优解与个体最优解、群体最优解之间的关系分析,针对DPSO算法易早熟和收敛慢的缺点,重新定义了离散粒子群DPSO的速度、位置公式,结合生物界中物种在生存密度过大时个体会自动分散迁徙的特性和局部搜索算法(SEC)后,提出了一种新的自逃逸混合离散粒子群算法(SEHDPSO).自逃逸思想是一种确定性变异操作,能使算法中陷入局部极小区域的粒子通过自逃逸行为进行全局寻优,从而克服算法易早熟的缺陷.仿真结果表明,SEHDPSO算法比混合蚁群算法(ACS+2-OPT)具有更好的收敛性和搜索效率.  相似文献   

16.
为解决粒子群算法在求解组合优化问题中存在的早熟性收敛和收敛速度慢等问题,将粒子群算法与局部搜索优化算法结合,可抑制粒子群算法早熟收敛问题,提高粒子群算法的收敛速度。通过建立有效的局部搜索优化算法所需借助的参照优化边集,提高了局部搜索优化算法的求解质量和求解效率。新的混合粒子群算法高效收敛于中小规模旅行商问题的全局最优解,实验表明改进的混合粒子群算法是有效的。  相似文献   

17.
求解车辆路径问题的离散粒子群算法   总被引:5,自引:2,他引:5  
考虑车辆行驶时间和顾客服务时间的不确定性,建立了以车辆配送总费用最小为目标的机会约束规划模型,将其进行清晰化处理,使之转化为一类确定性数学模型,并构造了求解该问题的一种离散粒子群算法。算法重新定义了粒子的运动方程及其相关离散量运算法则,并设计了排斥算子来维持群体的多样性。与标准遗传算法和粒子群算法比较,该算法能够有效避免算法陷入局部最优,取得了满意的结果。  相似文献   

18.
遗传算法与粒子群优化算法作为经典的进化计算方法已经被广泛地应用于函数优化、生产调度、机器学习和数据挖掘等领域。对这两种经典算法在求解不同问题时的性能进行了系统的对比和分析,比较了两种算法在求解单峰和多峰问题上的性能差异。进一步对算法的健壮性进行了测试,分析了算法运行过程中参数对算法性能的影响。最终总结出两种算法的性能特点,并讨论了算法的改进策略,旨在为工程应用中的算法选择提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号