首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Experimental studies using a falling film apparatus and a theoretical analysis of heat and mass transfer for mixtures lead to the following results.During nucleate boiling the separation effect, that is, the selectivity, and the heat transfer are influenced to a great extent by liquid-side mass transfer resistances. The selectivity diminishes significantly with increasing heat flux. The heat transfer coefficients for boiling mixtures can be much lower than for pure substances. For the calculations liquid-side mass transfer resistances were assumed to be the only reason for the reduction of both the selectivity and the heat transfer coefficients. No further physical explanations were needed.During surface boiling the reduction of the heat transfer coefficients is negligible for practical applications. The selectivity is mainly controlled by the thermodynamic equilibrium. The liquid-side mass transfer coefficients are of the same order of magnitude as found in physical absorption and absorption with chemical reactions, i.e. (2–5) × 10−4 ms−1.The effect if liquid-side mass transfer resistances on heat transfer and selectivity during partial evaporation of the binary refrigerant mixture R11–R113 in a falling film apparatus was investigated by varying the heat flux, the film Reynolds number and the liquid composition. During surface boiling the reduction of the heat transfer coefficients in negligible for technical applications, because of the minor deviations from evaporation which are mainly controlled by thermodynamic equilibrium. Nevertheless, the liquid-side mass transfer coefficients, which can be determined by the measured vapour and liquid mole fractions, are of the same order of magnitude as in physical absorption and absorption with chemical reactions, i.e. β = (2–5) × 10−4 m s−1. The coupled heat and mass transfer during falling film evaporatation of mixtures, condensation and absorption [17,19] can be calculated with the same relationships as for the hydrodynamics of falling films.During nucleate boiling the selectivity diminishes significantly and heat transfer is influenced to a great extent by liquid-side mass transfer resistances. There is considerable deviation form evaporation controlled exclusively by thermodynamic equilibrium. The heat transfer coefficients α for the R11–R113 mixture as well as for ten other binary and two ternary mixtures could be calculated assuming the mass transfer resistances to be the only reason for the reduction of the heat transfer coefficient α during boiling of mixtures. No other physical explanations were needed. The calculation method is easily extendable to multicomponent mixtures, if the corresponding vapour-liquid equilibria are available.  相似文献   

4.
The flow in a liquid falling film is predominantly laminar, and the liquid-side mass transfer is limited by molecular diffusion. The effective way to enhance the mass transfer is to improve the liquid film flow behavior. The falling film behaviors of water, ethanol and ethylene glycol in nine different wavy microchannels were simulated by Computational Fluid Dynamics. The simulation results show that the falling film thickness exhibits a waveform distribution resulting in a resonance phenomenon along the wavy microchannel. The fluctuation of liquid film surface increases the gas–liquid interface area, and the internal eddy flow inside the liquid film also improves the turbulence of liquid film, the gas–liquid mass transfer in falling film microchannels is intensified. Compared with flat microchannel, the CO_2 absorption efficiency in water in the wavy microchannel is improved over 41%. Prediction models of liquid film amplitude and average liquid film thickness were established respectively.  相似文献   

5.
Heat transfer characteristics for a falling turbulent liquid film flow over a fin are analyzed using the conjugate convection-conduction theory. Numerical results are obtained from a simultaneous solution of the energy equations of the fluid and the fin. Results are presented for the fin temperature distribution, dimensionless heat transfer coefficients, local heat fluxes, and fin efficiencies.  相似文献   

6.
提出了一种双面液膜反转方案,竖直布置2组或2组以上交叉双尺度波纹板束为传热面,在上板束各对板底部设置耙形导流器,交叉地将上板束各对板两侧的液膜引至下板束异侧,然后利用液膜与具有水平沟槽的波纹板片上的表面张力作用使反转后的下降液膜均匀化,以此实现液膜反转和交叉双尺度波纹板技术的复合强化。建立了溴化锂水溶液在2段光滑平板上降膜反转吸收过程的传热传质数学模型并进行了数值计算。给出了反转液膜前后液膜内流场、温度场、质量分数分布计算结果,并讨论了溴化锂水溶液降膜吸收传热和传质过程中反转次数对传热和传质系数的影响。  相似文献   

7.
The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial evaporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transferof falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.  相似文献   

8.
Eddy characteristics on mass transfer close to free interface   总被引:1,自引:0,他引:1  
The velocity fluctuations in the immediate vicinity of a free interface were measured with a hot film anemometer. And mass transfer rates and eddy exposure times were analyzed by using the method of deterministic approach. These mass transfer rates were compared with the mass transfer rates by means of concentration measurements in the air-water system. The eddy exposure time distributions obtained from velocity data were skewed toward the lower time value. The contribution of eddies wi:h small exposure time was increased as the liquid became more turbulent. The mass transfer rates were mainly contributed by the Prandtl size eddies and even larger eddies. The mass transfer predictions by the single eddy model employing a deterministic method were in good agreement with the experimental results by independent measurements of concentration.  相似文献   

9.
This paper studies flow characteristics and their effect on local mass transfer rate to a flat plate electrode in a FM01-LC electrochemical reactor. 3D reactor simulations under limiting current and turbulent flow conditions were performed using potassium ferro-ferricyanide electrochemical system with sodium sulfate as supporting electrolyte. The model consists of mass-transport equations coupled to hydrodynamic solution obtained from Reynolds-averaged Navier–Stokes equations using standard k? turbulence model, where the average velocity field, the turbulence level given by the eddy kinetic energy and the turbulent viscosity of the hydrodynamic calculation were used to evaluate the convection, turbulent diffusion and the concentration wall function. The turbulent mass diffusivity was evaluated by Kays–Crawford equation using heat and mass transfer analogies, while wall functions, for mass transport, were adapted from Launder–Spalding equations. Simulation results describe main flow properties, concentration profiles throughout the entire volume of the reactor and local diffusion flux over the electrode. Overall mass transfer coefficients estimated by simulation, without fitting parameters, agree closely with experimental coefficients determined from limiting current measurements (1.85% average error) for Re between 187 and 1407.  相似文献   

10.
The heat transfer efficiency during the pyrolysis process is a key factor to be considered in the design of pyrolysis reactors. In this study, the average apparent heat transfer characteristics of molten plastic pyrolysis in a vertical falling film reactor were explored by experiments and numerical simulation and the apparent heat transfer coefficients were determined. In addition, the temperature distribution and the thickness of the liquid film in the reactor were predicted and the influences of pyrolysis temperatures on the average apparent heat transfer coefficients were discussed.  相似文献   

11.
分析了错流降膜液体干燥剂除湿及再生传热传质过程 ,建立了基于实际除湿系统的描述再生和除湿过程的数学模型 ,考虑到除湿过程中产生的热效应 ,以氯化钙溶液为除湿剂时 ,对气侧和液侧的传热传质系数进行了理论和数值求解 .计算结果表明 ,传热传质系数与气流流动状态、除湿剂的热物理性质等因素有关  相似文献   

12.
The effect of the gas and liquid flow rates on the gas-phase mass and heat transfer rates in turbulent gas streams in wetted-wall columns with cocurrent and countercurrent gas-liquid flow was studied. The experiments were carried out on the adiabatic vaporization of water into a turbulent air stream under both conditions of rippling and no rippling on the surface of the falling liquid film. The experimental results showed that the effect of the gas and liquid flow rates on the mass and heat transfer rates are in good agreement with the theoretical predictions and that the effect of the rippling on the mass and heat transfer rates can be neglected.  相似文献   

13.
利用传统的多管排列式蒸发器对高黏度、易结垢的混合物进行蒸发,容易造成布液器堵塞,且结垢后的传热管难以清理。因此根据物料特性,本文设计了一种新型的降膜蒸发器,采用大降液孔加倾斜环板进行布膜,利用内径较大的锥筒作为传热壁面,并以粗甲酯作为试验工质对蒸发器的降膜蒸发传热系数随蒸发器筒体半锥度角、液膜流动雷诺数以及输入热通量之间的关系进行了试验研究。结果表明:该型蒸发器对于上述工质具有较好的适用性,蒸发系统能够在保持较高的传热系数的条件下,连续运行而不发生堵塞;蒸发器筒体锥度角有效地强化了降膜蒸发传热过程,而较大的热通量及进料流量在一定程度上却不利于蒸发传热。最后建立了降膜蒸发传热系数随蒸发器筒体半锥角和流动准数之间的经验关联式。  相似文献   

14.
Mass transfer across the falling film: Simulations and experiments   总被引:1,自引:0,他引:1  
Mass transfer across the thin falling film gas-liquid interface is a very important process as in chemical engineering and other fields, and yet there is still a lack of general predictability of the transfer quantity based on basic hydrodynamic parameters and independent of the geometrical setup. In this work, a numerical simulation is carried out for a vertical falling film arrangement. The wave dynamics and the associated mass transfer phenomena are discussed and compared with previous experimental empirical relationships. Based on the validity of the simulated results for wave parameters, numerical experiments for mass transfer were carried out with the aim of comparing to the empirical relation based on a single hydrodynamic parameter β (the gradient of the vertical fluctuating velocity at the interface) established previously by Law and Khoo [2002. Transport across a turbulent gas-liquid interface. A.I.Ch.E. Journal 48(9), 1856-1868.] and Xu et al. [2006. Mass transfer across the turbulence gas-water interface. A.I.Ch.E. Journal 52, 3363-3374] with various non-falling film experiments. Separately, experiments in an inclined plate thin falling film apparatus were carried out to determine the β distribution and associated mass transfer. It is found that there is reasonable concurrence with the mentioned empirical relation, hence suggesting the general applicability of β characterizing the scalar transport across the gas-liquid interface independent of the means of turbulence generation.  相似文献   

15.
自由降膜传热传质数值模拟技术研究进展   总被引:1,自引:0,他引:1  
自由降膜过程在许多工业领域,特别是在石油化工工业中有着非常广泛的应用。近年来,随着计算机技术的发展,采用理论分析、数值模拟和实验相结合的技术手段,对降膜传热传质过程进行了深入的研究,为优化降膜传热传质过程和新型设备的开发提供了理论基础。  相似文献   

16.
The gas-slurry-solid fluidized bed is a unique operation where the upward flow of a liquid-solid suspension contacts with the concurrent up-flow of a gas, supporting a bed of coarser particles in a fluidized state. In the present study we measured the gas holdup, the coarse particle holdup, the cylinder-to-slurry heat transfer coefficient, and the cylinder-to-liquid mass transfer coefficient at controlled slurry concentrations. The slurry particles were sieved glass beads of 0.1 mm average diameter and their volumetric fraction was varied at 0, 0.01, 0.05 or 0.1. The slurry and the gas velocities were varied up to about 12 and 15 cm/s, respectively. The coarse particles fluidized were sieved glass beads of average diameters of 3.6 and 5.2 mm. The individual phase-holdup values were measured and served for use in correlating the heat and mass transfer coefficients. The heat and mass transfer coefficients in the slurry flow, gas-slurry transport bed, slurry-solid fluidized bed and gas-slurry-solid fluidized bed operations can be correlated well by dimensionless equations of a unified formula in terms of the Nusselt (Sherwood) number, the Prandtl (Schmidt) number and the specific power group including the energy dissipation rate per unit mass of slurry, with different numerical constants and exponent values, respectively, to the heat and mass transfer coefficients. The presence of an analogy between the heat and mass transfer from the vertically immersed cylinder in these slurry flow, gas-slurry transport bed and gas-slurry-solid fluidized bed systems is suggested.  相似文献   

17.
In many industrial units such as packing columns, falling film reactors, etc., the liquid phase is designed as a falling film. It is well known that the mass and heat transfer in laminar wavy film flows is significantly enhanced compared to flat films. The kinetic phenomena underlying the increase in mass and heat transfer are, however, still not fully understood. For an efficient design of falling film units, computational models that account for these enhanced transport mechanisms are of key importance. In this article, we present a reduced modeling approach based on a long‐wave approximation to the fluid dynamics of the film. Furthermore, we introduce a new two‐dimensional (2D) high‐resolution laser‐induced luminescence measurement technique. Both in the numerical simulation results and in the high‐resolution 2D‐concentration measurements obtained in the experiments we observe similar patterns of high concentrations locally, especially in the areas close to the wave hump. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2265–2276, 2018  相似文献   

18.
Gas–liquid mass transfer in a falling film microreactor (FFMR) with 29 microchannels (0.6 mm width each) was investigated. CO2 was absorbed from a CO2/N2 gaseous mixture into a NaOH aqueous solution and the liquid-side mass transfer coefficient and the gas-side mass transfer coefficient were measured. The influence of gas concentration on the value of gas-side mass transfer coefficient has been discussed.  相似文献   

19.
Recently the absorption heat pumps and chillers have received considerable attention due to their low electricity consumption rate. Therefore, it is important to understand the transport mechanism of an absorption process. In this paper, a numerical study of the heat and mass transfer taking place on a wavy falling liquid film of an absorption process is presented. With previously solved periodic wavy film flow solutions, the finite difference method is employed to solve the heat and mass transport equations. The numerical solution indicates that the waves significantly increase the transport rates. A comparison of the transfer rates of the wavy film to that of the smooth film is presented to show that the mass transfer rate can be doubled.  相似文献   

20.
李季  郑志坚  朱家骅  夏素兰  李勇  文浩 《化工学报》2014,65(11):4238-4245
根据气溶胶颗粒拟流体性质提出了气液交叉流界面捕集PM2.5的传质类比模型.分析了颗粒Schmidt数及其指数m对气溶胶流体传热传质类比的影响机理.以常用的横掠错排管束对流传热Nu方程为基础,导出了横掠错排降膜阵列PM2.5传质Sherwood数方程,由此建立了以m为模型参数的PM2.5捕集效率预测模型.用横掠20列×90排ø3 mm降膜阵列PM2.5捕集效率实测数据回归获得m值为0.808.在Reynolds数50~650的范围内,模型预测传质Sh与实测值误差在±20%之内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号