首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以Pb(NO3)2、ZrOCl2·8H2O和TiCl3为原料,采用电化学还原的方法,制备出了氧化铅纳米棒。用扫描电镜(SEM)、透射电镜(TEM)、X射线能量分散谱(EDS)和x射线衍射仪(XRD)研究产物的微观形貌和晶体结构。研究结果表明:用电化学还原法制备的氧化铅纳米棒是单晶的结构,氯离子的存在对产物有很大的影响。  相似文献   

2.
采用低温水热法在五种不同基底上制备得到了氧化锌纳米棒阵列,通过SEM、TEM、XRD、EDS和XPS表征研究了所得产物的微观形貌和元素组成,并对不同基底生长的氧化锌纳米棒阵列进行了场发射性能和附着力测试。结果表明:硅片、导电玻璃、镍片、不锈钢和镍钛合金上生长的氧化锌纳米棒样品的开启电场依次升高;由于氧化锌纳米棒与硅基底之间具有更好的附着性能,硅片基底制备的氧化锌纳米棒场发射性能最好,并显示出最好的发射稳定性,在电流密度0.5mA/cm2下持续工作15h时,其电流波动小于10%。  相似文献   

3.
顾留洋  王树林 《功能材料》2015,(3):3041-3044
首先通过溶胶-凝胶法在Si片基底上制备1层ZnO纳米薄膜,作为纳米棒的晶种层,然后利用金属浴沉积法在ZnO纳米薄膜基础上制备择优取向的ZnO纳米棒阵列,最后通过水热法二次成核结晶形成纳米片。研究证明,ZnO纳米棒阵列和纳米片均沿着c轴取向。在Cu2+抑制极性面生长的作用下,形成的ZnO纳米片结构均匀,分布面积广,单片ZnO纳米片的厚度约为8 nm,面积呈平方微米级,较大的有40μm2左右。ZnO纳米结构的生长取向对其物理化学性能具有重要影响。高度沿c轴取向的ZnO纳米棒有利于紫外光发射和激光器的发展,但极性面的缩小不利于光催化反应。  相似文献   

4.
采用简单、低温的方法,在修饰过的Zn片上成功制备出具有高度取向的ZnO纳米棒阵列.用SEM、XRD和PL技术对制备出的ZnO纳米棒的结构和谱学特性进行了表征,并通过降解甲基橙溶液研究了其光催化活性.结果表明,ZnO纳米棒是六方钎锌矿晶,与基底垂直,具有沿(002)晶面择优生长的特征.统计结果显示,湿化学反应24h后90%以上的ZnO纳米棒直径为80~140nm,长度为4μm.在PL谱中观察到3个荧光发射带,中心波长分别位于386nm的紫带、524nm的绿带和450~500nm附近的蓝带.ZnO纳米棒的光催化反应为一级反应,表观速率常数与甲基橙的初始浓度有关.  相似文献   

5.
由NiCl2、NaBH4等组成的微乳液体系发生氧化还原反应制备NiO纳米棒前驱物,在熔融盐环境中860℃焙烧2.5h前驱体发生氧化反应,成功地制备了NiO纳米棒,用透射电子显微镜、X射线衍射对NiO纳米棒进行了表征.  相似文献   

6.
离子液体中微波辅助制备ZnO纳米棒及光学性能研究   总被引:1,自引:0,他引:1  
在离子液体1-丁基-3甲基咪唑六氟磷酸盐[BMIM][PF6]水溶液中通过微波加热10min制备出ZnO纳米棒。用X射线衍射仪、场发射扫描电镜、紫外分光光度计和荧光分光光度计对其形貌、结构和性能进行了表征。研究表明,产物结晶性良好,产率高,大小均匀,平均直径为20nm,长度为400~500nm。通过对ZnO纳米棒形成机理和实验条件进行系统探讨,提出了三步反应机理,同时发现离子液体对产物的形貌起着关键作用。该方法简便、快速、环保,可推广运用于其它一维纳米功能材料的制备。  相似文献   

7.
溶胶-凝胶法制备硼酸镁纳米棒   总被引:8,自引:0,他引:8  
以硝酸镁、硼酸、柠檬酸为原料, 利用溶胶-凝胶法及不同温度后续煅烧制备了硼酸镁(MgB4O7和Mg2B2O5)纳米棒. 用X射线衍射(XRD)分析了纳米棒的结构, 用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了纳米棒的形貌. 实验结果表明, 750℃煅烧产物为MgB4O7纳米棒, 950℃煅烧产物为Mg2B2O5纳米棒, 纳米棒的径长比可以通过调节原料硝酸镁和硼酸的比例来控制. 用自催化机理解释了硼酸镁纳米棒的生长机理.  相似文献   

8.
一维结构的纳米氧化锌具有独特的电子和光电性能,在众多领域有着广阔的应用前景,故而对其合成方法的研究十分重要.本文中以聚乙烯醇作为修饰剂,通过水热法在较低的反应温度下制备了一维氧化锌纳米棒.分别用透射电镜、选区电子衍射和X射线衍射对产物形貌与结构进行了表征.研究发现,以聚乙烯醇为助剂在120℃反应24h可制备出具有六方结构的氧化锌纳米棒,其直径为50~80nm、长度为1~2μm.实验表明,聚乙烯醇在一维结构合成过程中起到关键作用,以Zn(0H)2为水热反应前驱体可制备出品质较高的一维氧化锌纳米棒.  相似文献   

9.
采用电化学沉积法制备了ZnO纳米棒,首先讨论了电化学沉积参数对氧化锌(ZnO)纳米棒形貌的影响,并对不同长度ZnO纳米棒的光吸收和反射等性质进行了研究.实验发现沉积时间是影响纳米棒长度、直径的重要因素,ZnO纳米棒的微观形貌对其光学性质有重要影响.然后以氧化锌纳米棒为n型材料,以氧化亚铜为p型材料,通过电化学沉积法构筑了ZnO/Cu2O异质结太阳能电池,并测试了其光伏性能,研究表明增长纳米棒阵列的长度使得开路电压、短路电流密度及光电转换效率等性能得到提升.最后,综合分析了氧化锌纳米棒形貌与所组装电池的性能之间的关系,发现调控氧化锌纳米棒的形貌是提高ZnO/Cu2O异质结太阳能电池光伏性能的有效途径.  相似文献   

10.
ZnO纳米棒水热法制备及其发光性能   总被引:1,自引:0,他引:1  
采用水热法在玻璃基底上成功制备出了ZnO纳米棒.用x射线衍射仪(xRD)和扫描电子显微镜(SEM)对ZnO纳米棒的晶体结构和表面形貌进行了表征,初步探讨了ZnO纳米棒的生长机理;同时对ZnO纳米棒的光致发光性能进行测量,分析了水热温度和反应时间对ZnO纳米棒光致发光性能的影响.结果表明:ZnO纳米棒呈现六方纤锌矿结构,具有沿(002)晶面择优生长特征;随着水热反应温度的升高,ZnO纳米棒的发光强度逐渐增强;随着反应时间的延长,ZnO纳米棒发光强度在1~3 h内增强,而在3~10 h反而减弱.  相似文献   

11.
Chen X  Duan H  Zhou Z  Liang J  Gnanaraj J 《Nanotechnology》2008,19(36):365306
Free-standing Cu nanorod arrays on Cu foil have been fabricated by a template-assisted method. Cu nanorods were potentiostatically deposited on mechanically polished Cu foil using anodized aluminum oxide templates as the deposition mask. Three electrolyte systems were compared, including two acid copper sulfate based solutions and one alkaline solution. The most uniform nanorods were achieved in the alkaline electrolyte. The weight gain per unit area after electrodeposition has been used as a direct measure of average length of deposited Cu nanorods. It was found that our control over the uniformity in nanorod length across the array is important in reaching the maximized aspect ratio without aggregation. Through controlling the weight change it was possible to control the aspect ratio of nanorods and to avoid aggregation of nanorods. Our capability to fabricate free-standing Cu nanorod arrays of uniform height with maximized aspect ratio on Cu foil is especially important in applying this nanostructured Cu as a current collector in Li ion batteries.  相似文献   

12.
A porous network of Y2O3 nanorods was successfully prepared by an easy two-step and template-free process. Firstly, Y(OH)3 was galvanostatically grown on steel cathode by electrogeneration of base in chloride medium. Then it was thermally converted to oxide via heat treatment. Phase transformations during the heat treatment of deposit were proposed. Morphological studies showed that the obtained oxide has a porous network, composed of intercrossed nanorods. The nanorods are 200–300 nm in length and 50–70 nm in diameter. The mechanism of base electrogeneration in chloride medium, the deposition of Y(OH)3 nanorods on the cathode surface and their thermal conversion to Y2O3 have been discussed.  相似文献   

13.
Electrolytic transformation of benzene in water is evaluated as a potential mechanism that can be implemented for in situ remediation of benzene in groundwater. Electrolytic transformation experiments were conducted using inert electrodes that are separated by a membrane. Electrolytes that consist of sodium chloride or sodium nitrate solutions with 40 mg/L benzene concentration were used. Electric currents of 1, 5 and 10 mA (1.8, 9.0 and 18.1 mA/L, respectively) were applied and the transformation of benzene was monitored and compared with a control. The results show that electrolytic transformation of benzene occurred under different rates that depend upon the type of electrolyte and the current density. Transformation results in formation of chlorinated benzene when sodium chloride is the electrolyte. However, processing for long enough time (up to 300 h) resulted in transformation of the chlorinated benzene byproducts. Benzene transformation occurred when the electrolyte was sodium nitrate but the rate was slower than the case with sodium chloride. The results did no show formation of byproducts in this case. The transformation rate was dependent on the current density. The results with sodium chloride showed that the rate increases with increasing the current density, but there is an optimum value, beyond which increasing the current density will not increase the transformation rate.  相似文献   

14.
目的 为了增强钢制结构表面的耐蚀性,研究Mo含量对CoCrFeMnNiMox高熵合金组织与耐蚀性的影响。方法 采用激光熔覆的方式在N80钢上制备CoCrFeMnNiMox(x=0.1、0.2、0.3、0.4、0.5)高熵合金熔覆层,研究Mo含量变化对高熵合金组织、物相与耐蚀性的影响。结果 CoCrFeMnNiMox熔覆试样均由单一的FCC固溶体相组成,随着Mo含量的增加,晶格畸变增大;当Mo的摩尔比超过0.3后,晶粒有长大倾向;Mo的摩尔比为0.5时,表面择优生长晶面由(111)密排晶面转变为(200)非密排晶面。熔覆试样在氯化钠溶液和稀硫酸溶液中的耐蚀性相较N80钢提升明显,其中,CoCrMnFeNiMo0.3的耐蚀性最好,在质量分数为3.5%的氯化钠溶液中其自腐蚀电流密度是N80钢的5%,自腐蚀电位比N80钢提高了1倍;在0.5 mol/L硫酸溶液中,其自腐蚀电流密度是N80钢的31%,钝化区电流密度比N80钢降低了1个数量级。结论 在该高熵合金体系中,随着Mo含量的增加,晶格畸变增大。CoCrMnFeNiMox高熵合金熔覆层可以有效地阻止基体腐蚀的发生。Mo元素在溶液中能够形成MoO3附着在金属表面,从而形成稳定致密的保护层,减少点蚀的发生。CoCrMnFeNiMo0.3熔覆层的耐蚀性最好。  相似文献   

15.
Cadmium sulfide–zinc oxide composite nanorods having at least 100 nm diameters were synthesized by a two-step chemical deposition technique. Polycrystalline nanorods of ZnO were grown on indium tin oxide coated quartz substrate by aqueous chemical growth technique. Cadmium sulfide was deposited on the surface of the ZnO nanorod thin film by chemical bath deposition. The X-ray diffraction results revealed the co-existence of polycrystalline CdS and ZnO, both having hexagonal structures. Neither any phase mixing nor any surface diffusion induced alloying was observed. Micro-Raman study detected a pair of optical phonons at 301 cm−1 and 438 cm−1 corresponding to hexagonal CdS and ZnO, respectively. An enhanced light to electricity conversion efficiency of 2.52% was recorded from CdS–ZnO photoanode based electrochemical solar cell under 0.5 sun illumination condition (50 mW cm−2). We observed a significant enhancement of short circuit current of the electrochemical solar cells due to addition of ionic salt solution to the electrolyte.  相似文献   

16.
Multiple branched manganese oxide nanorods were obtained through the rapid one-step microwave-assisted hydrothermal synthesis by the reduction of potassium permanganate in hydrochloric acid solution without using any catalysts or surfactants. The formation mechanism of the branched α-MnO2 was studied by systematically varying the reaction time, which were “oriented attachment” and rolling-cum-phase process. The electrochemical performance of the samples was examined by cyclic voltammetry. The specific surface area of the branched α-MnO2 and the electrolyte in the solution were found to remarkably affect the specific capacitance. This microwave-assisted technique enables the quick and simple preparation of branched MnO2 nanorods under mild conditions and maybe readily extended to the preparation of many other branched nanoparticles.  相似文献   

17.
The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by reanodization in an electrolyte solution not dissolving the film. Data about the kinetics of reanodization depending on the porosity of the matrices were obtained. On the other hand, the slopes of the kinetic curves during re-anodization were calculated by two equations expressing the dependence of these slopes on the ionic current density. A discrepancy was ascertained between the values of the calculated slopes and those experimentally found. For this discrepancy a possible explanation is proposed, related to the temperature increase in the film, because of that the real current density significantly increases during re-anodization.  相似文献   

18.
Ionically conducting polymers, frequently known as polymer electrolytes, are potential candidates as hosts for drugs to be delivered iontophoretically. The iontophoretic delivery of lithium or lidocaine from polymer electrolyte films through a cellophane membrane was examined using different delivery current regimes. Thin, mechanically strong, polymer electrolyte films were fabricated from poly(ethylene oxide) (PEO) with lithium chloride or lidocaine hydrochloride. Experiments showed that iontophoretic transport of both lithium chloride and lidocaine hydrochloride might be achieved from these PEO-based films. Cation transport number determinations give values for PEO-based films of about 0.4 for lithium chloride systems and 0.12 for lidocaine hydrochloride systems. The mechanism of transport from these PEO-based polymer electrolyte films allows the delivery of ionic salts such as lithium chloride and lidocaine hydrochloride to be controlled solely by current, thus providing a system that can deliver precise amounts of drug.  相似文献   

19.
Ionically conducting polymers, frequently known as polymer electrolytes, are potential candidates as hosts for drugs to be delivered iontophoretically. The iontophoretic delivery of lithium or lidocaine from polymer electrolyte films through a cellophane membrane was examined using different delivery current regimes. Thin, mechanically strong, polymer electrolyte films were fabricated from poly(ethylene oxide) (PEO) with lithium chloride or lidocaine hydrochloride. Experiments showed that iontophoretic transport of both lithium chloride and lidocaine hydrochloride might be achieved from these PEO-based films. Cation transport number determinations give values for PEO-based films of about 0.4 for lithium chloride systems and 0.12 for lidocaine hydrochloride systems. The mechanism of transport from these PEO-based polymer electrolyte films allows the delivery of ionic salts such as lithium chloride and lidocaine hydrochloride to be controlled solely by current, thus providing a system that can deliver precise amounts of drug.  相似文献   

20.
Polyaniline electrode (PANI) was formed electrochemically at graphite electrode. Electrochemical polymerization was performed at constant current density of 2.0 mA cm−2 from aqueous solution of 1.0 mol dm−3 HCl with addition of 0.25 mol dm−3 aniline monomer. Electrochemical characterization of the PANI electrode in chloride and chloride/citrate electrolyte was performed using cyclic voltammetry and galvanostatic measurement in order to study the influence of citrate ions on charge/discharge capability and cycling efficiency. It was observed that, for anodic potential 0.32 V, higher electrode capacity of PANI electrode in chloride/citrate electrolyte was obtained, comparing to chloride electrolyte, indicating positive effect of citrate ions on cycling characteristics. On the other hand, for higher anodic potential limit of 0.50 V, faster decrease of the electrode capacity in chloride/citrate electrolyte was observed. It was suggested that influence of both chloride and citrate anions had exhibited influence on electrochemical behavior of PANI electrode in citrate containing electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号