首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heat capacity, magnetic susceptibility and magnetization of Y1−xUxRh4B4 were determined within the range from x = 0 to X = 0.65. The influence of the local magnetic moments of the U atoms (dU-U = 5.27 Å) in the CeCo4B4 structure of the tetragonal RERh4B4 was studied. A.c. susceptibility measurements showed a rather large value for the Tc depression of dTc/dx = −1.88 K per at. % U in the lower concentration range x = 0.0 to x = 0.06. In comparison with the (Bardeen-Cooper-Schrieffer) BCS theory and the Abrikosov-Gorkov model for dilute magnetic impurities, the decrease in the jump in specific heat at Tc vs. the depression of Tc is rather strong in these samples, so the existence of a demagnetizing Kondo cloud around the U moments seems likely. In the samples containing more U, the magnetization and d.c. susceptibility showed a tendency towards magnetic behaviour, but no evidence for long-range magnetic order was found.  相似文献   

2.
The superconducting YBa2Cu3O7−x samples were prepared by an Arc-Cast-Annealing (ACA) and Arc-Quench-Powder-Growth (AQPG) processes as modifications of QMG and MPMG techniques. Pe'lets of YBa7Cu3O7−x were quenched by arc-casting in a water cooled copper mould and then the solidified rods were annealed at different temperatures and times to store the superconductivity. Annealed at an appropriate temperature the cast rods showed rising superconducting properties with increasing the annealing time. Some of the rods after solidification were crushed to give powder which was compacted and then subjected to a melt growth process. As a result of this processing, large grained textured YBCO superconductors with dispersed 211 inclusions in the superconducting grains were produced. The microstructure and physical properties of these ACA and AQPG samples were investigated when subject to various temperature cycles. It was found that the volume fraction and size distribution of the second phase inclusions were dependent upon the maximum temperature during the melt growth process. The critical current density (Jc) for ACA and AQPG samples was estimated from magnetization loops using Bean's critical state model. It was found that the value of Jc of AQPG sample was much higher than that of ACA sample.  相似文献   

3.
The HfFe6Ge6-type RMn6Sn6−xXx′ solid solutions (R=Tb, Dy, X′=Ga, In; x≤1.4) have been studied by powder magnetization measurements. All the series are characterized by ferrimagnetic ordering and by a decrease in Curie temperatures with the substitution (ΔTcx≈−39 K for X′=Ga and ΔTcx≈−75 K for X′=In). The RMn6Sn6−xGax systems are characterized by a strong decrease in the spin reorientation temperature with substitution (ΔTtx≈−191 K and −78 K for R=Tb and Dy, respectively) while this transition almost does not change in systems containing indium. The coercive fields drastically decrease with the substitution in the TbMn6Sn6−xGax system while the substitution of In for Sn has a weaker effect. The coercive fields of the Dy compounds do not vary greatly with the substitution in both series. The behaviour of the TbMn6Sn6−xGax is compared with the evolutions observed in the TmMn6Sn6−xGax series. This comparison strongly suggests that the replacement of Sn by Ga changes the sign of the A02 crystal field parameter.  相似文献   

4.
We have carried out measurements of complex ac susceptibility χ=χ′+χ″ as a function of temperature and ac field amplitude on rectangular bar-shaped high-temperature superconductors (HTS) with nominal composition of Bi1.6Pb0.4Sr2(Ca1−xNdx)2Cu3Oδ superconducting samples prepared by the solid-state reaction method. The effect of Nd-substitution on the Bi–(Pb)–Sr–Ca–Cu–O system has been investigated in terms of ac susceptibility study. We estimated the effective volume fraction of the grains and the field dependence of the inter-granular critical current density comparing the maximum of the extracted matrix susceptibility and the corresponding calculated data which was obtained employing the power law critical state model.  相似文献   

5.
The crystallographic and the Curie temperature of the Sm2Fe17−xCrxC2 (x=0.5, 1, 1.5 and 2) carbides have been extensively studied. X-ray diffraction studies have shown that all these alloys are approximately single phases corresponding to the Th2Zn17 type rhombohedral structure with a small amount of -Fe. The amount of this residual -Fe phase decreases with increasing the Cr atomic content. It decreases from 1 wt% for x=0.5 to 0.4 wt.% for x=2. The lattice parameter c increases as a function of the Cr atomic content x from x=0 to x=1.5 and then decreases. This is due to the Cr atoms which prefer to substitute the Fe atoms in the 6c sites located along the c-axis. The lattice parameter a and the unit-cell volume decrease in all substitution ranges. The insertion of the C atoms leads essentially to an increase of the distances between the 9d and 18h sites and the 9d–18f sites. The Curie temperature reaches a maximum value of 583 K for x=1.5 and then decreases to 551 K for x=2. The enhancement of the Tc for lower Cr contents is due to a lowering of the hybridization of the iron atoms with their neighbors, the magnetovolume effect and the reduction of antiferromagnetic interactions. However, the decrease in Tc for higher Cr content is due to the reduction in the number of Fe–Fe pairs due to the magnetic dilution effect. For given interatomic distances, the exchange coupling of the Cr–Cr atoms is not of antiferromagnetic type and the exchange integral of the Cr–Cr pair is higher than that of the Fe–Fe pair.  相似文献   

6.
The a.c. susceptibility and high field magnetization on TbRh2−xPdxPdxSi2 and TbRu2−xPdxSi2 compounds were investigated up to 140 kOe. The (T,x) magnetic phase diagrams were determined. For both systems, an increase in the Pd content causes a decrease in the Néel temperature and changes the magnetization curves.  相似文献   

7.
The HfFe6Ge6-type YbMn6Ge6−xGax solid solution (0.07≤x≤0.72) has been studied by X-ray diffraction, microprobe analysis and powder magnetization measurements. All the compounds order antiferromagnetically between TN=481 K for x=0.07 and TN=349 K for x=0.72 and display more or less pronounced spontaneous magnetization at lower temperature. The corresponding Curie points increase from 40 K for x=0.07 to 319 K for x=0.72. The maximum magnetization values of the Ga-rich compounds (M≈5 μB/f.u. at 6 K) is compatible with a ferrimagnetic order of the Mn and Yb sublattices whereas the smaller values measured in the Ga-poor compounds suggest the stabilization of non-colinear magnetic structures. All the studied compounds are characterized by rather large coercive fields at low temperature (4.0≤Hc≤8.2 kOe).  相似文献   

8.
The structure and magnetic properties of the Pr1−xGdxMn2Ge2 (0.0≤x≤1.0) compounds have been investigated by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. The lattice constants and the unit cell volume obey Vegard’s law. Samples in this alloy system exhibit a crossover from ferromagnetic ordering for PrMn2Ge2 to antiferromagnetic ordering for GdMn2Ge2 as a function of Gd concentration x. At low temperatures, the rare earth sublattice also orders and reconfigures the ordering in the Mn sublattice. The results are summarized in the xT magnetic phase diagram.  相似文献   

9.
The effects of composition and heat treatment on the structure and magnetic properties of mechanically milled Nd2xFe100−3xBx alloys (x = 2–6) have been studied. High remanences have been obtained in isotropic samples consisting of a nanocrystalline mixture of Nd2Fe14B and -Fe. For optimally heat treated samples, an increase in the volume fraction of -Fe from 14% to 73%, increased the reduced remanence (Mr/Ms) from 0.56 to 0.64. The corresponding coercivities decreased from about 8 kOe to only 1.6 kOe. The magnetic behaviour of these Nd2Fe14B--Fe alloys is associated with exchange coupling between the hard and soft magnetic phases.  相似文献   

10.
A series of the Chevrel phases, Mo6−xRuxTe8 and Mo6Te8−xSx (x=0, 1, 2), has been prepared and the various physical properties, such as the elastic modulus, Debye temperature, and electrical resistivity, have been evaluated. The relationships between several properties of the compounds have also been studied. Young’s modulus and Debye temperature of Mo6−xRuxTe8 and Mo6Te8−xSx increase with increasing x value. The relationship between the Vickers hardness and Young’s modulus shows ceramic characteristics for Mo6−xRuxTe8, while they show glass-like characteristics for Mo6Te8−xSx. The electrical resistivities of Mo6−xRuxTe8 and Mo6Te8−xSx increase with increasing x value.  相似文献   

11.
Lithium ion conductors, Li3−2x(Sc1−xZrx)2(PO4)3 (0 x 0.3), were prepared by a solid-state reaction. TG–DTA analysis indicated no phase transition in the samples with x superior to 0.05. X-ray powder diffraction analysis of these samples clearly showed the stabilization of a superionic conduction phase at room temperature with an orthorhombic system Pbcn. The highest conductivity was observed for the sample with x=0.05, and ascribed to the stabilization of the superionic conduction phase and the introduction of vacancies on the Li+ sites by substituting Zr4+ for Sc3.  相似文献   

12.
Polycrystalline samples of potassium doped lanthanum manganites having nanometric crystallite size have been synthesized by pyrophoric method. The Curie temperature (TC) of the prepared samples is found to be strongly dependent on K content and spans between 260 and 309 K. Close to TC, large change in magnetic entropy has been observed in all the samples. The maximum magnetic entropy change observed for samples with different concentration of K, exhibits a linear dependence with the applied magnetic field. Adiabatic temperature change at TC at 1 T also increases with K doping and attains a maximum of 2.1 K for La0.85K0.15MnO3. Estimated relative cooling power of La1−xKxMnO3 compounds is nearly one-third of pure Gd. In addition to the tuneability of TC between 260 and 310 K, higher chemical stability, lower eddy current heating and inexpensive preparation technique; the magnetic entropy change in La0.85K0.15MnO3 compound at 1 T magnetic field is found to be 3.00 J/kg K and is 89% to that known for the prototype magnetic refrigerant (pure Gd). Our result on magnetocaloric properties suggests that La1−xKxMnO3 compounds are attractive as a possible refrigerant for near room temperature magnetic refrigeration.  相似文献   

13.
The effects of Mn partial substitution for Fe in TbFe10.5Mo1.5 on the structure and magnetic properties were investigated. TbFe10.5−xMnxMo1.5 samples (x = 1.5, 2.0, 3.0, 4.0, 5.0) were prepared by means of arc-melting and subsequent vacuum annealing. The structure and magnetic properties of TbFe10.5−xMnxMo1.5 compounds were investigated by X-ray powder diffraction and magnetic properties measurements. The following conclusions were obtained: all the TbFe10.5−xMnxMo1.5 compounds studied crystallize in the ThMn12-type structure; the unit-cell volume increases monotonically with increasing Mn concentration; a compensation temperature was observed in the magnetization-temperature curve of TbFe7.5Mn3Mo1.5 compounds. With increasing Mn concentration, the saturation magnetization at 4.4 K decreases to zero, and then increases again, the magnetic moments of the transition-metal sublattice of TbFe10.5−xMnxMo1.5 compounds decrease monotonically.  相似文献   

14.
Magnetic and thermal expansion measurements have been carried out on the polycrystalline Sm(Mn1−xCrx)2Ge2 samples to see how the antiferromagnetie (AFMII) region in SmMn2Ge2 is affected by Cr substitution. It is found that the antiferromagnetic region disappears for samples with less than 2 at.% of Cr. Sharp changes in the thermal expansivity (Δl/l) at FMI–AFMII and AFMII–FMII transitions are observed, indicating first order transitions. The decrease in relative thermal expansivity at the two transitions with the increase of Cr concentration is related to the decrease in the stability and the temperature-range of the AFMII phase observed in magnetization measurements. A spin reorientation transition (TSR) has been observed for x=0, at 148 K. It is found that the TSR increases with the increase of Cr concentration. A magnetic phase diagram as a function of Cr concentration in Sm(Mn1−xCrx)2Ge2 has been constructed.  相似文献   

15.
The solid solution limit of Pb1−xSrxTiO3 was determined in the composition range of 0≤x≤1.0 at room temperature (RT). The phases were isolated and indexed in a tetragonal system with x<0.5 and in a cubic one with x≥0.5. The cell parameters of Pb1−xSrxTiO3 continuously, but nonlinearly, change with solubility x. The intrinsic thermal expansions of the solid solution compounds Pb1−xSrxTiO3 (x=0, 0.15, 0.20, 0.50, 0.90, 1.0) were obtained in the temperature range from RT to 1173 K with high-temperature X-ray powder diffraction. Negative thermal expansion coefficients of Pb1−xSrxTiO3 (x=0, 0.15, 0.20) were found below the Curie points. The thermal expansions of these titanate ceramics were highly correlated with the solubility in the solid solution Pb1−xSrxTiO3.  相似文献   

16.
The phase relations and hydrogenation behavior of Sr(Al1−xMgx)2 alloys were studied. The pseudobinary C36-type Laves phase Sr(Al,Mg)2 was found as a structural intermediate between the Zintl phase and the C14 Laves phase. The single-phase regions for the Zintl phase, C36 phase and C14 phase, were determined to be x=0–0.10, 0.45–0.68 and 0.80–1, respectively. The Mg-substituted Zintl phase Sr(Al0.95Mg0.05)2 can be hydrogenated to Sr(Al,Mg)2H2 at about 473 K. However, the Sr(Al,Mg)2H2 directly decomposes into SrH2 and Sr(Al,Mg)4 starting at 513 K. When the temperature is 573 K, the C36 Laves phase Sr(Al0.5Mg0.5)2 can be hydrogenated into SrMgH4 and Al, while the C14 Laves phase Sr(Al0.1Mg0.9)2 is hydrogenated into SrMgH4, Mg17Al12 and Mg.  相似文献   

17.
The ternary phase Yb4Ni10+xGa21−x has been synthesised from the elements by high frequency melting in argon atmosphere. The homogeneity region has been established from X-ray powder data and confirmed by EDX analysis for 0.3≤x≤1. The crystal structure of Yb4Ni10+xGa21−x has been estimated from X-ray single crystal data: space group C2/m (no. 12), Z=2, a=20.6815(9) Å, b=4.0560(4) Å, c=15.3520(7) Å, β=124.800(3)°, R(F)=0.023 for 1701 symmetry independent reflections with F(hkl)>4σ(F). A special feature of the structure is the local disorder within the gallium/nickel network. Neglecting atomic disorder in the region of the Ga9 and Ga11 positions, the Yb4Ni10+xGa21−x structure is an occupation variant of the Ho4Ni10Ga21 type with nickel atoms partially replacing the Ga atoms in the 2d sites at the centers of distorted icosahedra. From magnetic susceptibility and from LIII-XAS spectra, the valence state of ytterbium is near 3+.  相似文献   

18.
The effect of substituting Sr for Ba on the magneto-transport and magnetic properties of (La1/3Sm2/3)0.67Ba0.33MnO3 system, has been investigated. The samples, (La1/3Sm2/3)0.67Ba0.33−xSrxMnO3 (x = 0.0, 0.1, 0.2 and 0.33), synthesized by citrate gel route, crystallize in an orthorhombic structure (space group Pnma, no. 62). The unit cell volume decreases while the metal-insulator transition temperature (TMI) increases with increasing Sr content. The localization of charge carriers occurs at low temperatures and becomes more pronounced with decreasing Sr content which leads to an enhancement of resistivity. This could be understood by the variation of MnOMn bond-distance and angle. Reappearance of semiconducting behavior (dρ/dT < 0) is observed only in samples with x = 0 and x = 0.1 below certain temperature (T < TMI). These samples exhibit thermal irreversibility behavior for a field-cooled (FC) and zero-field-cooled (ZFC) magnetization data in a magnetic field of 100 Oe. This is ascribed to the competition between the superexchange and double exchange interactions. The change in physical properties has been correlated to chemical parameters such as ionic radii, tolerance factor, electronegativity and variation in MnOMn angle.  相似文献   

19.
Measurements of magnetic properties, X-ray diffraction and magnetostriction were made on Tb0.27Dy0.73(Fe1 − xAlx)2 (x = 0.1, 0.2, …, 0.7) compounds. It was found that the system has the cubic MgCu2 structure over almost the whole (Fe,Al) concentration range investigated, except for a narrow intermediate range (x = 0.4–0.6) where the hexagonal MgZn2 structure appears. With increasing Al content x, the lattice constant a increases linearly with x. The first replacement of Fe results in a marked decrease in the Curie temperature, which is followed by a slight decrease in TC with x. A linear decrease in magnetostriction of |λ| − λ| at room temperature with x was also observed from 1530 × 10−6 for x=0 to 36×10−6 for x=0.3. The saturation magnetization σs exhibits a complex concentration dependence in the Tb0.27Dy0.73(Fe)1 − xAlx)2 system: in the range x < 0.5, σs increases linearly with x and, for x = 0.5–0.6, σs decreases and then increases again. An enhancement of the magnetic ‘hardness’ in this system was also observed at low temperature.  相似文献   

20.
Structure and magnetic and electrical properties of the polycrystalline compounds LaMn1−xRhxO3 (0 < x ≤ 1) have been investigated. The samples were characterized by X-ray diffraction and Rietveld refinement which confirmed the space group Pnma (No. 62) for all compositions at room temperature. A transformation from O′- to O-type orthorhombic structure is seen near x = 0.6 tending to make the phase unstable. The electrical conductivity measurement shows semiconducting property above room temperature with a rather low activation energy for Mn-rich compositions. Compounds in the region 0.1 ≤ x ≤ 0.9 show ferromagnetic property but the substitution of Rh3+ ion for Mn3+ ion suppresses the ferromagnetism that results in reducing the Curie temperature, TC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号