首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the feasibility of using whole, naturally loose deciduous incisors for dose reconstruction with electron paramagnetic resonance (EPR) spectroscopy was investigated. The properties of EPR signals were analysed before and after laboratory irradiation. The parameters of the native EPR signal of deciduous incisors was found to be different from those from enamel of permanent molars. The native EPR signal of deciduous incisors with peak-to-peak line width of 0.65 mT was located at g = 2.0050. The evaluated parameters of the dosimetric EPR signal (CO2-) of deciduous incisors were in agreement with those for enamel of permanent molars. A detection threshold for absorbed dose of about 100 mGy was estimated.  相似文献   

2.
Powdered human tooth enamel was exposed to 60Co gamma rays up to a dose of 100 kGy. The electron paramagnetic resonance (EPR) signal intensity (1) of the radiation-generated carbon dioxide radicals was measured for dependence on absorbed dose (D). The EPR dose response can be fitted with an exponential saturation function I = I(M)[1 - exp(-D/D37)] with the saturated signal intensity (I(M)) and the dose saturation value (D37). The obtained value D37 = 9.64 (+/- 0.96) kGy (measured at least one month after irradiation) exceeds those given in the literature. The saturated concentration of orthorhombic CO2- radicals was estimated at 6.5 x 10(17) per gram of enamel by comparing the integrated EPR spectra of enamel and a standard MgO:Cr probe. For enamel samples, which were heated before irradiation for one hour at +405 degrees C, the value of D37T = 3.89 (+/- 0.44) kGy and the saturated value of CO2- radicals 3.4 x 10(17) per gram of enamel were lower than for unheated samples. The initial rise of the signal with the dose was slightly higher (8.8 x 10(13) radicals/g x Gy) for heated compared with unheated samples (6.8 x 10(13) radicals/g x Gy).  相似文献   

3.
The use of electron paramagnetic resonance (EPR) tooth dosimetry for calculation of organ doses requires conversion of the measured absorbed dose in enamel. Before deriving conversion factors from simulation calculations with a realistic anthropomorphic human phantom, in the current study a simplified phantom was chosen to compare EPR measurement and Monte Carlo calculation. The dose response of tooth enamel of molars at various positions inside a cylindrical Plexiglas phantom of head-size was calculated hy Monte Carlo modelling in parallel photon beams of X rays of 63 keV equivalent energy and 60Co gamma rays (1.25 Mev). For X ray exposure, preliminary results of EPR dosimetry with tooth enamel samples prepared from molars irradiated in the phantom were in agreement with calculation. The mean value of the ratio of the measured to the calculated dose was 0.93 +/- 0.08.  相似文献   

4.
The adult reference male and female computational voxel phantoms recommended by ICRP are adapted into the Monte Carlo transport code FLUKA. The FLUKA code is then utilised for computation of dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free-in-air for colon, lungs, stomach wall, breast, gonads, urinary bladder, oesophagus, liver and thyroid due to a broad parallel beam of mono-energetic photons impinging in anterior-posterior and posterior-anterior directions in the energy range of 15 keV-10 MeV. The computed DCCs of colon, lungs, stomach wall and breast are found to be in good agreement with the results published in ICRP publication 110. The present work thus validates the use of FLUKA code in computation of organ DCCs for photons using ICRP adult voxel phantoms. Further, the DCCs for gonads, urinary bladder, oesophagus, liver and thyroid are evaluated and compared with results published in ICRP 74 in the above-mentioned energy range and geometries. Significant differences in DCCs are observed for breast, testis and thyroid above 1 MeV, and for most of the organs at energies below 60 keV in comparison with the results published in ICRP 74. The DCCs of female voxel phantom were found to be higher in comparison with male phantom for almost all organs in both the geometries.  相似文献   

5.
The contribution of Cherenkov emission in the formation of photoreactivatable damage (pyrimidine dimers) in E. coli cells has been analyzed. The mean quantity of Cherenkov photons in the wavelength range (200–600) nm produced in a suspension volume unit per absorbed dose unit was calculated by a Monte Carlo method for a point isotropic gamma-ray source with energy up to 30 MeV. The Cherenkov emission spectrum and the dose dependence on gamma-ray energy and the linear dimension irradiated suspension volumes were also obtained. On the basis of this data the magnitude of the photoreactivation effect as a function of gamma-ray energy and suspension volume have been predicted and are compared with experimental results. The role of direct electronic excitation of DNA in the formation of photoactivatable damage in E. coli cells is also discussed.  相似文献   

6.
The paper describes the utilization of a silicon photodiode as a detector of exposure dose rate. Theoretical considerations deal with the magnitude of the photocurrent as a function of minority carrier diffusion length and silicon thickness. Experimental results compare the sensitivity and radiation damage of photodiodes manufactured from various silicon materials. The photodiode energy dependence for photons in the range 7.6 keV to 1.25 MeV is also presented.  相似文献   

7.
This paper addresses issues in the application of the electron paramagnetic resonance (EPR) retrospective dosimetry with dental tissues exposed by radionuclides accumulated in the dentin. A simple dosimetric model of a tooth incorporating 90Sr is presented. The tooth is modelled as two concentric cylinders: the inner cylinder composed of dentin, and the outer cylindrical shell of enamel. Extensive Monte Carlo calculations were done to obtain the distributions of absorbed dose in dentin and enamel for teeth of different sizes. The results were used to calculate the mean absorbed doses in enamel that are directly measurable by EPR. A relationship between such measured doses and the specific activity of 90Sr in dentin was derived based on a simple model of 90Sr accumulation. The roles of different tooth tissues as dose detectors are analysed, and the importance of dentin as a dosimetric material for internal exposure is pointed out.  相似文献   

8.
In usual personal dosimetry, whole body irradiation is assumed. However, the opportunity of partial irradiation is increasing and the tendencies of protection quantities caused under those irradiation conditions are different. The code system has been developed and effective dose and organ absorbed doses have been calculated in the case of horizontal narrow photon beam irradiated from various directions at three representative body sections, 40, 50 and 60 cm originating from the top of the head. This work covers 24 beam directions, each 15 degrees angle ranging from 0 degrees to 345 degrees, three energy levels, 45 keV, 90 keV and 1.25 MeV, and three beam diameters of 1, 2 and 4 cm. These results show that the beam injected from diagonally front or other specific direction causes peak dose in the case of partial irradiation.  相似文献   

9.
The effects of 1 Me V electron irradiation in air at a fixed accumulated dose and dose rates of 393.8,196.9,78.8,and 39.4 Gy s-1on a shape memory epoxy(SMEP)resin were studied.Under low-dose-rate irradiation,accelerated degradation of the shape memory performance was observed;specifically,the shape recovery ratio decreased exponentially with increasing irradiation time(that is,with decreasing dose rate).In addition,the glass transition temperature of the SMEP,as measured by dynamic mechanical analysis,decreased overall with decreasing dose rate.The dose rate effects of 1 Me V electron irradiation on the SMEP were confirmed by structural analysis using electron paramagnetic resonance(EPR)spectroscopy and Fourier transform infrared(FTIR)spectroscopy.The EPR spectra showed that the concentration of free radicals increased exponentially with increasing irradiation time.Moreover,the FTIR spectra showed higher intensities of the peaks at 1660 and 1720 cm-1,which are attributed to stretching vibrations of amide C=O and ketone/acid C=O,at lower dose rates.The intensities of the IR peaks at 1660 and 1720 cm-1 increased exponentially with increasing irradiation time,and the relative intensity of the IR peak at 2926 cm-1decreased exponentially with increasing irradiation time.The solid-state13 C nuclear magnetic resonance(NMR)spectra of the SMEP before and after 1 Me V electron irradiation at a dose of 1970 k Gy and a dose rate of 78.8 Gy s-1 indicated damage to the CH2–N groups and aliphatic isopropanol segment.This result is consistent with the detection of nitrogenous free radicals,a phenoxy-type free radical,and several types of pyrolytic carbon radicals by EPR.During the subsequent propagation process,the free radicals produced at lower dose rates were more likely to react with oxygen,which was present at higher concentrations,and form the more destructive peroxy free radicals and oxidation products such as acids,amides,and ketones.The increase in peroxy free radicals at lower dose rates was thought to accelerate the degradation of the macroscopic performance of the SMEP.  相似文献   

10.
We have extended the empirical work of Vano et al.[1] relating the slope of the detector efficiency curve to the active volume for Ge detectors. The analysis was carried out using Monte Carlo techniques and covered a wide range of incident energies (200 keV-20 MeV) and active volumes (19.6 cm3–396 cm3). It is shown that the expression of Vano et al.[1] is only valid over the energy range 200 keV-3 MeV for active volumes <50 cm3. The upper bound decreases to 2 MeV for volumes of a few hundred cm3. The usable energy range can, however, be extended to 6 MeV by introducing higher order terms into the polynomial. Above this energy, the shape of the efficiency curve is better described by a non-linear function since linear forms fail simultaneously to fit large active volumes and high energies. We therefore propose a composite function which reduces to the form given in Vano et al. in the low energy/active volume limit. By comparison with the Monte Carlo results, it is estimated that relative efficiencies can be calculated to within 6% over the energy range 200 keV-20 MeV and active volumes 20 cm3–400 cm3. Since the largest errors occur for the smallest volumes, we recommend that for energies <3 MeV a two-fold approach be followed, i.e. using the expression of Vano et al.[1] for active volumes less than 50 cm3 and the proposed non-linear form for larger volumes. For high energy work (E > 3 MeV), we advocate the non-linear form. In this way, average errors can be kept 3%. Finally, we point out that the real power of the expression of Vano et al. lies not in predicting efficiencies, but active volumes.  相似文献   

11.
Optimisation of the parameters for recording the electron paramagnetic resonance (EPR) spectra of dental enamel for absorbed dose reconstruction was performed for an EMX (Bruker) spectrometer supplied with a high-sensitivity microwave cavity. Dose determination was performed using a previously developed automatic spectra processing procedure, which uses the non-linear fit of a model spectrum. The experimental error was estimated as the standard deviation of the results from the nominal doses for the set of spectra recorded for 10 samples prepared from teeth of different persons and irradiated in the dose range 0-500 mGy. The microwave power and magnetic field modulation amplitude corresponding to the minimum of dependencies of the error on these parameters were adopted as the optimal ones. For the sets of spectra recorded at optimal parameters for sample masses 100, 50 and 30 mg, the errors of dose determination were obtained as 18, 27 and 37 mGy respectively.  相似文献   

12.
The applicability of radiophotoluminescence dosimetry was determined by assessing various radiophotoluminescence dosemeter (RPLD) properties for measuring medical radiation doses from radiation sources of a continuous spectrum. The RPLD was found to be accurate for measuring doses in diagnostics (50-125 keV) and radiation therapy (6, 10 and 18 MV photons, 6 and 15 MeV electrons). The RPLD shows excellent dose linearity (R(2) > 0.99), reproducibility and batch uniformity, and minimal fading and accurate accumulated dose measurement. The dosemeter material is independent of photon energy in the diagnostic range; however, the dosemeter requires additional calibration in the mammography energy range and also for accurate dose measurement with photon or electron energies in radiation therapy. RPLD measurements with a tin filter show considerable angular dependence at angles exceeding 50° between the photon beam and the normal to the long axis of the dosemeter. The RPLD measurement accuracy at high doses can be improved with optimised pre-heating schemes.  相似文献   

13.
The model and development is described of a new generation of Monte Carlo track structure codes. The code LEPHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented.  相似文献   

14.
Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.  相似文献   

15.
Micro and nano-structure hydroxyapatite samples were synthesized via several different methods. The samples were characterised utilising the Fourier transmission infra-red, scanning electron microscope and X-ray diffraction methods, to find out the structure most similar to human tooth enamel, and the best method was found. The electron paramagnetic resonance (EPR) signals of the gamma-irradiated samples were measured using an EPR spectrometer system. A calibration curve was established by irradiation of the samples at four doses of 50-500 mGy. The parameters of the calibration curve, slope and intercept with dose axis are determined by linear regression analysis. This calibration curve can be used for human tooth enamel for retrospective dosimetry purposes.  相似文献   

16.
Fluence to organ dose and effective dose conversion coefficients have been calculated for electrons from 1 MeV to 100 GeV using an anthropomorphic phantom and the EGS4 code. The conversion coefficients were calculated for six typical irradiation geometries taking electromagnetic cascade shower and photonuclear reactions into account. The contribution to the absorbed dose due to the photonuclear reactions in energies up to 140 MeV was evaluated to be less than 0.2%. Even at energies above 140 MeV the dose contributions of the photonuclear reactions were insignificant.  相似文献   

17.
Radiation research results in the field of polymeric materials, obtained in the last few years by electron beam irradiation of aqueous solutions containing appropriate monomer mixtures, such as acrylamide, acrylic acid and vinyl acetate, are presented. Two types of polymeric flocculants for waste water treatment and three kinds of hydrogels for agriculture and medicine are described. The effects of radiation absorbed dose, radiation absorbed dose rate, and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.3 to 9 kGy and 4 kGy to 12 kGy for hydrogels. Some experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Polymeric material processing was developed on a pilot plant level with ALID-7 electron linear accelerator of 5.5 MeV and 0.7 kW, built in the Electron Accelerator Laboratory of the Institute of Atomic Physics, Bucharest. A new facility permitting the application of simultaneous electron beam and microwave irradiation is presently under investigation. Preliminary results demonstrated that some polymeric flocculant characteristics, such as linearity, were improved by simultaneous electron beam and microwave treatment. Also, the absorbed dose levels decreased and intrinsic viscosity increased, respectively, by about two times by this new material processing method.  相似文献   

18.
The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy. Most (9 of 12) laboratories reported the dose to be within 50 mGy of the delivered dose of 79 mGy, and 10 of 12 laboratories reported the dose to be within 100 mGy of the delivered dose of 176 mGy. At the high-dose tested (704 mGy) agreement within 25% of the delivered dose was found in 10 laboratories. Features of EPR dose reconstruction protocols that affect dosimetry performance were found to be magnetic field modulation amplitude in EPR spectrum recording, EPR signal model in spectrum deconvolution and duration of latency period for tooth enamel samples after preparation.  相似文献   

19.
Absorbed dose to tooth enamel was examined against external photon exposure by measurements with thermoluminescence dosemeters (TLDs) and Monte Carlo calculations. TLDs were placed in a realistic physical phantom to measure dose to the teeth region in a head. A voxel-type phantom was constructed from computed tomography (CT) images of the physical phantom. Monte Carlo calculations with this voxel-type phantom were performed to analyse the results of the experiments. The data obtained were compared to the enamel doses, which were calculated with a modified MIRD-type phantom and already given in a previous paper. It was confirmed that the data derived with the MIRD-type phantom are applicable for retrospective individual dose assessments by electron spin resonance (ESR) dosimetry using teeth for the photon energy region above 300 keV. The analysis, however, indicated that the configuration of the head can affect the enamel dose relative to external exposure to photons with energy below 100 keV.  相似文献   

20.
The 4.4 MeV photon reference field described in ISO 4037 is produced by the (12)C(p,p')(12)C (E(x) = 4.4389 MeV) reaction using a thick elemental carbon target and a proton beam with an energy of 5.7 MeV. The relative abundance of the isotope (13)C in elemental carbon is 1.10%. Therefore, the 4.4 MeV photon field is contaminated by neutrons produced by the (13)C(p,n) (13)N reaction (Q = -3.003 MeV). The ambient dose equivalent H*(10) produced by these neutrons is of the same order of magnitude as the ambient dose equivalent produced by the 4.4 MeV photons. For the calibration of dosemeters, especially those also sensitive to neutrons, the spectral fluence distribution of these neutrons has to be known in detail. On the other hand, a mixed photon/neutron field is very useful for the calibration of tissue-equivalent proportional counters (TEPC), if this field combines a high-linear energy transfer (LET) component produced by low-energy neutrons and a low-LET component resulting from photons with about the same ambient dose equivalent and energies up to 7 MeV. Such a mixed field was produced at the PTB accelerator facility using a thin CaF(2) + (nat)C target and a 5.7 MeV proton beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号