首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pure and Mn-doped K0.5Na0.5NbO3 (KNN) films were deposited using solution-gelation method. The crystal structure, ferroelectric properties, spectral response and J-V performance of photovoltaic effect were systematically investigated. Both the ferroelectric and leakage properties are obviously enhanced for Mn-doped KNN films. A fascinating phenomenon is observed that the ferroelectric photovoltaic effect is enhanced in Mn-doped KNN films, which is originated from the improved ferroelectric polarization and narrower band gap. The transition element Nb partially substituted by Mn results in the lattice distortion and further destroys the symmetry space structure, which enhances ferroelectric polarization. And the narrower band gap effectively decreases the internal potential barrier to separate the carriers. This work gives a clear relationship between the lattice distortion, ferroelectric and photovoltaic response. It is certain that lead-free transparent K0.5Na0.5NbO3 films can be potentially applied in viable ferroelectric based solar cells.  相似文献   

2.
Eu-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT6-xEu, x=0.00–2.00 at%) lead-free piezoelectric ceramics have been synthesized by the solution combustion method. The effect of Eu doping concentration on the phase structure, microstructure and electrical properties of BNBT6 ceramics has been investigated. The XRD analysis confirms that the europium additive incorporates into the BNBT6 lattice and results in a phase transition from the coexistence of rhombohedral and tetragonal phases to a more symmetric pseudocubic phase. The SEM images indicate that the europium additive has little effect on the ceramic microstructure and the average grain size is about 2.0 μm. The electrical properties of BNBT6 ceramics can be improved by appropriate Eu doping. The 0.25 at% Eu doped BNBT6 ceramic presents excellent electrical properties: piezoelectric constant d33=149 pC/N, remnant polarization Pr=40.27 μC/cm2, coercive field Ec=2.95 kV/mm, dielectric constant εr=1658 and dissipation factor tan δ=0.0557 (10 kHz).  相似文献   

3.
4.
(K0.5−xLix)Na0.5(Nb1−ySby)O3 (KLNNSxy, x = 0–4 mol% and y = 0–8 mol%) lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The denser microstructure and better electrical properties of the ceramics were obtained as compared to the pure K0.5Na0.5NbO3 ceramic. The temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the KLNNS2.5–5 ceramic exhibits good electrical properties (kp  49%, k31  30% and , tan δ  0.019), and possesses good temperature stability in the temperature range of −40 to 85 °C. The related mechanisms for improved electrical properties and temperature stability were also discussed. Moreover, buzzers based on the KLNNS2.5–5 ceramic have been fabricated and their characterization is presented. These results show that the KLNNS2.5–5 ceramic is a promising lead-free material for practical application in buzzers.  相似文献   

5.
CuO as a sintering additive was utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as ∼930 °C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.  相似文献   

6.
A series of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 (BNT-BST-100xNN) lead-free ceramics were fabricated using conventional solid-state reaction technique. The phase behavior, microstructure, dielectric, ac impedance and energy-storage properties of the sintered ceramics were systematically investigated. XRD patterns and surface SEM micrographs revealed the introduction of NaNbO3 didn't change the perovskite structure of BNT-BST at low doping level. The NaNbO3 doping gave rise to slimmer P-E loops and thus gained enhanced energy storage properties. Therefore, a maximum energy storage density of 1.03 J/cm3 was achieved at 85 kV/cm at x = 0.01 via increasing the dielectric breakdown strength (DBS). Temperature-dependent dielectric permittivity illustrated the enhanced relaxor characteristics, implying the long-rang ferroelectric order was further damaged due to the introduction of NaNbO3. The results above indicate the sintered ternary ceramics can be a promising lead-free candidate for energy storage capacitors.  相似文献   

7.
Ta-doping K0.5Na0.5Nb1−xTaxO3 (x = 0.1, 0.2, 0.3, 0.4) powder was synthesized by hydrothermal approach and its ceramics were prepared after sintering and polarizing treatment in this work. The K0.5Na0.5Nb0.7Ta0.3O3 ceramics near morphotropic phase boundary (MPB), which exhibited optimum piezoelectric properties of d33 = 210 pC/N and good electromechanical coupling factors of Kp = 0.3. The domain structure has been observed from TEM images which indicates that the K0.5Na0.5Nb0.7Ta0.3O3 ceramics have good piezoelectric and ferroelectric properties for it is near the MPB.  相似文献   

8.
Li2CO3 has been used as a sintering aid for fabricating lead-free ferroelectric ceramic 0.93(Bi0.5Na0.5TiO3)-0.07BaTiO3. A small amount (0.5 wt%) of it can effectively lower the sintering temperature of the ceramic from 1200 °C to 980 °C. Unlike other low temperature-sintered ferroelectric ceramics, the ceramic retains its good dielectric and piezoelectric properties, giving a high dielectric constant (1570), low dielectric loss (4.8%) and large piezoelectric coefficient (180 pC/N). The “depolarization” temperature is also increased to 100 °C and the thermal stability of piezoelectricity is improved. Our results reveal that oxygen vacancies generated from the diffusion of the sintering aid into the lattices are crucial for realizing the low temperature sintering. Owing to the low sintering temperature and good dielectric and piezoelectric properties, the ceramics, especially of multilayered structure, should have great potential for practical applications.  相似文献   

9.
Lead free piezoelectric Bi0.5(Na0.5K0.5)0.5TiO3 (pure and 1 wt.%, 2 wt.%, 4 wt.% Sb-doped) ceramics were synthesized away from its MPB. The crystalline nature of the BNKT ceramic was studied by XRD and SEM. Depolarization temperature (Td) and transition temperature (Tc) were observed through phase transitions in dielectric studies which were found to increase after Sb-doping, thus increasing its usable temperature range. In the study of relaxation behavior, the activation energy for relaxation was found to be 0.33, 0.43, 0.57 and 0.56 eV for pure and Sb-doped samples, respectively. All samples were found to exhibit normal Curie-Weiss law above their Tc. Doping of Sb was found to restrain the diffused character of the pure sample. In P-E loop, Sb-doping was found to increase the ferroelectric properties.Pure and Sb-doped BNKT ceramics exhibited high values of piezoelectric charge coefficient (d33) as 115, 121, 129 and 100 pC/N, respectively.  相似文献   

10.
The microstructure of Bi0.5(Na0.70K0.20Li0.10)0.5TiO3 (BNKLT) coatings fabricated by thermal spray method was closely examined by TEM, revealing the coexistence of rhombohedral and tetragonal perovskite main phases, and very minor secondary phases, while all amorphous phase was crystallized after heat treatment. Obtaining coexisting rhombohedral and tetragonal perovskite phases after the thermal spray process involving the melting-recrystallization and heat treatment process resulted in piezoelectric ceramic coating with excellent electrical and electromechanical properties. The effective piezoelectric coefficient d33 of the heat-treated BNKLT coating reached 86?pm/V with substrate clamping, measured over macroscale by laser scanning vibrometer.  相似文献   

11.
Lanthanum, Potassium and Niobium have been selected as cation dopants to modify the relaxor characteristics of 0.90(Bi0.5Na0.5TiO3)–0.10PbTiO3. The experimental results show that La lowers the phase transition temperatures and decreases the grain size. In contrast, the grain size of K-doped composition tends to increase. Furthermore, the maximum of dielectric permittivity and the Curie temperature increase as compared to those of La-doped material. La can improve the broadness of dielectric permittivity of 0.90(Bi0.5Na0.5TiO3)–0.10PbTiO3. However, Nb is a better promising dopant for enhancing the relaxor behavior for this composition.  相似文献   

12.
The effects of sintering temperature and the addition of CuO on the microstructure and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3 were investigated. The KNN-5LNS ceramics doped with CuO were well sintered even at 940 °C. A small amount of Cu2+ was incorporated into the KNN-5LNS matrix ceramics and XRD patterns suggested that the Cu2+ ion could enter the A or B site of the perovskite unit cell and replace the Nb5+ or Li+ simultaneously. The study also showed that the introduction of CuO effectively reduced the sintering temperature and improved the electrical properties of KNN-5LNS. The high piezoelectric properties of d33 = 263 pC/N, kp = 0.42, Qm = 143 and tan δ = 0.024 were obtained from the 0.4 mol% CuO doped KNN-5LNS ceramics sintered at 980 °C for 2 h.  相似文献   

13.
This article studies the microstructure and piezoelectric properties of a ceramic lead-free NBT under different amount of ZnO doping. X-ray diffraction shows that Zn2+ diffuses into the lattice of (Bi0.5Na0.5)TiO3 to form a solid solution with a pure perovskite structure. By modifying the zinc oxide content, the sintering behavior of (Bi0.5Na0.5)TiO3 ceramics was significantly improved and the grain size was increased. The piezoelectric coefficient d33 for the 1.0 wt.% ZnO-doped (Bi0.5Na0.5)TiO3 ceramics sintered at 1050 °C was found to be 95 pC/N, and the electromechanical coupling factor kp = 0.13. However, the piezoelectric coefficient d33 for the 0.5 wt.% ZnO-doped (Bi0.5Na0.5)TiO3 ceramics sintered at 1140 °C was found to be 110 pC/N, and the electromechanical coupling factor kp = 0.17.  相似文献   

14.
15.
Lead-free (Na0.5K0.5)NbO3 ceramics doped with CaTiO3 (0–3 mol%) have been prepared by the conventional mixed oxide method in this paper. All of the CaTiO3 doped (Na0.5K0.5)NbO3 specimens do not deliquesce as exposed to water for a long time. The samples are characterized by X-ray diffraction analysis, Raman scattering spectra, scanning electron microscopy, and atomic force microscopy. The dielectric, piezoelectric and ferroelectric properties are also investigated. The results show that the addition of CaTiO3 is very effective in preventing the deliquescence and in improving the electric properties of (Na0.5K0.5)NbO3 ceramics. Finally, surface acoustic wave devices based on lead-free ceramics have been successfully fabricated and their characterization is presented.  相似文献   

16.
K0.5Na0.5Nb1-xTaxO3 (KNNT) (with x?=?0.00, 0.05, 0.10, 0.20, 0.30, 0.50 and 1) ceramics are prepared by ball milling and two calcinations at 830?°C for 5?h. Subsequent sintering of centimeter size pellets, 1–2?mm thick, is studied using conventional and spark plasma sintering techniques with various conditions. X-Ray diffraction and Raman spectroscopy phase identification reveal orthorhombic to tetragonal phase transitions occurring at about x?=?0.50, associated to chemical disorder. Scanning electron microscope observations and associated energy dispersive X-ray spectroscopy analysis reveal some composite aspect of the ceramics. Substitution of niobium by tantalum, corresponding to x increase, decreases significantly the grain size but also the densification of the ceramics sintered by conventional sintering, while, enhancement of the piezoelectric properties is observed for both sintering techniques. Thanks to parameters optimization of the spark plasma sintering process, temperature-time-pressure, significant improvement of the relative density over 96%, is obtained for all the compositions sintered between 920 and 960?°C, under 50?MPa, for 5–10?min with heating rates of 100?°C/min. High relative permittivity (εr =?1027), piezoelectric charge coefficient (d33 =?160 pC/N) and piezoelectric coupling factor (kp =?46%) are obtained in spark plasma sintered K0.5Na0.5Nb1-xTaxO3 composite ceramics, for x ranging between 0.10 and 0.30 and for some specific spark plasma sintering conditions. Thus, tantalum single element substitution on niobium site, combined with spark plasma sintering, is revealed to be a powerful combination for the optimization and the reliability of piezoelectric properties in KNN system.  相似文献   

17.
(1-x)(Bi0.5Na0.5)TiO3-xSrTiO3 (BNT-xST) (0 ≤ x ≤ 0.4) thin films were fabricated using a sol-gel technique on Pt(111)/Ti/SiO2/Si(100) substrates, which were investigated by piezoresponse force microscopy (PFM) and Raman spectroscopy. The composition-induced phase transition was analyzed by acquiring structural variations and the domain distribution on a local scale. Raman spectra showed phonon anomalies with peak broadening and shifting when increasing SrTiO3 (ST) concentrations were used. Changes in the domain morphology with changes in the composition were observed, and grains smaller than 0.5 µm were observed at lower concentrations of x = 0–0.25, while larger grains appeared with increasing ST contents. The switching spectroscopy PFM (SS-PFM) results supported a ferroelectric (FE) to relaxor ferroelectric (RFE) phase transition at approximately x ≈ 0.3 by means of analyzing the parameters as a function of the composition including the piezoresponse parameters of hysteresis loops (Dmax, Drem) and amplitude butterfly loops (Stotal, Sneg). Hence, these results demonstrated that the composition-driven FE to RFE phase transition behavior, which is consistent with the localized response behavior, is dependent on the ST content in bulk BNT-xST ceramics.  相似文献   

18.
Er3+ doped K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramics were synthesized by the solid-state reaction method. The upconversion emission properties of Er3+ doped KNN ceramics were investigated as a function of Er3+ concentration and incident pumping power intensity. Bright green (~555 nm) and red (670 nm) upconversion emission bands were obtained under 980 nm excitation at room temperature, which are attributed to (2H11/2, 4S3/2)→4I15/2 and 4F9/24I15/2 transitions, respectively. The upconversion emission intensity can be adjusted by changing Er3+ concentration, and the mechanism of upconversion processes involve not only a two-photon absorption but also a three-photon absorption. In addition to the admirable intrinsic piezoelectric properties of KNN, this kind of material may have potential application as a multifunctional device by integrating its upconversion and piezoelectric property.  相似文献   

19.
(1−x)K0.50Na0.50NbO3xBa0.80Ca0.20ZrO3 [(1−x)KNN–xBCZ] lead-free ceramics were prepared by the conventional solid-state method, and the effect of BCZ content on their phase structure and piezoelectric properties was studied. A coexistence of rhombohedral–orthorhombic phases was identified in the range 0.04<x<0.08. With increasing the BCZ content, their grain size becomes smaller, and their Curie temperature gradually decreases. An optimum piezoelectric behavior of d33∼197 pC/N and kp∼40.6% was demonstrated in the ceramic with x=0.06 because of the coexistence of two phases. As a result, the introduction of BCZ could further improve piezoelectric properties of KNN ceramics.  相似文献   

20.
In the present paper, the effect of addition of a small amount (8 wt%) of barium titanate (BT) on electrical properties of bismuth sodium titanate (BNT) forming a solid solution of a composition (0.92)(Bi0.5Na0.5TiO3)+(0.08)(BaTiO3) (BNT-BT-8) has mainly been reported. The solid solution of BNT-BT-8 was prepared by a cost effective and standard mixed-oxide method. Preliminary structural analysis using X-rays diffraction pattern and data showed the existence of two phases; orthorhombic (major) and tetragonal (minor impurity/secondary) phase. Analysis of scanning electron micrograph and energy dispersive spectrum of the pellet sample reveals the formation of high density with homogeneously distributed grains of varying dimension. The locations, phonon modes statistics, width and intensity of peaks of Raman spectra of BNT-BT-8 was analyzed by Raman spectroscopy and provided some data on molecular structure of the material. The effect of temperature and frequency on some ferroelectric characteristics of the material were studied. The frequency-temperature dependence of electrical characteristical such as impedance of the material was studied by impedance spectroscopy. The electric conductivity follows the Arrhenius equation and provided activation energy at different frequency. The dielectric and impedance spectroscopy suggest the existence of a non-Debye relaxation mechanism in the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号