首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red nucleus stimulation inhibits within the inferior olive. J. Neurophysiol. 80: 3127-3136, 1998. In the anesthetized cat, electrical stimulation of the magnocellular red nucleus (RNm) inhibits responses of rostral dorsal accessory olive (rDAO) neurons to cutaneous stimulation. We tested the hypothesis that RNm-mediated inhibition occurs within the inferior olive by using stimulation of the ventral funiculus (VF) of the spinal cord in place of cutaneous stimulation of the hindlimb. Fibers in the VF terminate on hindlimb rDAO neurons, so inhibition of this input would have to occur within the olive. rDAO responses elicited by VF stimulation were inhibited by prior stimulation of the RNm, indicating that inhibition occurs within the olive. In contrast, evoked potentials recorded from the VF or dorsal columns following hindlimb stimulation were not affected by prior stimulation of RNm, indicating that stimulation of the RNm does not inhibit olivary afferents at spinal levels. RNm stimulation that inhibited rDAO responses had little effect on evoked somatosensory responses in thalamus, indicating that inhibition generated by activity in RNm may be specific to rDAO. To test limb specificity of RNm-mediated inhibition, conditioning stimulation was applied to the dorsolateral funiculus at thoracic levels, which selectively activates RNm neurons projecting to the lumbar cord. Stimulation at thoracic levels inhibited evoked responses from hindlimb but not forelimb regions of rDAO, suggesting that inhibitory effects of RNm activity are limb specific. Several studies have reported that olivary neurons have reduced sensitivity to peripheral stimulation during movement; it is likely that RNm-mediated inhibition occurring within the olive contributes to this reduction of sensitivity. Inhibition of rDAO responses by descending motor pathways appears to be a salient feature of olivary function.  相似文献   

2.
Visual inputs to the brain are mapped in a retinocentric reference frame, but the motor system plans movements in a body-centered frame. This basic observation implies that the brain must transform target coordinates from one reference frame to another. Physiological studies revealed that the posterior parietal cortex may contribute a large part of such a transformation, but the question remains as to whether the premotor areas receive visual information, from the parietal cortex, readily coded in body-centered coordinates. To answer this question, we studied dorsal premotor cortex (PMd) neurons in two monkeys while they performed a conditional visuomotor task and maintained fixation at different gaze angles. Visual stimuli were presented on a video monitor, and the monkeys made limb movements on a panel of three touch pads located at the bottom of the monitor. A trial begins when the monkey puts its hand on the central pad. Then, later in the trial, a colored cue instructed a limb movement to the left touch pad if red or to the right one if green. The cues lasted for a variable delay, the instructed delay period, and their offset served as the go signal. The fixation spot was presented at the center of the screen or at one of four peripheral locations. Because the monkey's head was restrained, peripheral fixations caused a deviation of the eyes within the orbit, but for each fixation angle, the instructional cue was presented at nine locations with constant retinocentric coordinates. After the presentation of the instructional cue, 133 PMd cells displayed a phasic discharge (signal-related activity), 157 were tonically active during the instructed delay period (set-related or preparatory activity), and 104 were active after the go signal in relation to movement (movement-related activity). A large proportion of cells showed variations of the discharge rate in relation to limb movement direction, but only modest proportions were sensitive to the cue's location (signal, 43%; set, 34%; movement, 29%). More importantly, the activity of most neurons (signal, 74%; set, 79%; movement, 79%) varied significantly (analysis of variance, P < 0.05) with orbital eye position. A regression analysis showed that the neuronal activity varied linearly with eye position along the horizontal and vertical axes and can be approximated by a two-dimensional regression plane. These data provide evidence that eye position signals modulate the neuronal activity beyond sensory areas, including those involved in visually guided reaching limb movements. Further, they show that neuronal activity related to movement preparation and execution combines at least two directional parameters: arm movement direction and gaze direction in space. It is suggested that a substantial population of PMd cells codes limb movement direction in a head-centered reference frame.  相似文献   

3.
We used psychometric techniques and neurophysiological recordings to study the role of the putamen in somesthetic perception. Four monkeys were trained to categorize the speed of moving tactile stimuli. Animals performed a task in which one of two target switches had to be pressed with the right hand to indicate whether the speed of probe movement across the glabrous skin of the left, restrained hand was low or high. During the task we recorded the activity of neurons in the putamen contralateral (right) and ipsilateral (left) to the stimulated hand. We found different types of neuronal responses, all present in the right and left putamen. Some neurons responded during the stimulus period, others responded during the hand-arm movement used to indicate categorization, and others responded during both of these periods. The responses of many neurons did not vary either with the speed of the stimuli or in relation to the categorization process. In contrast, neurons of a particular type responded differentially: their activity reflected whether stimulus speed was low or high. These differential responses occurred during the stimulus and hand-arm motion periods. A number of the nondifferential and differential neurons were studied when the same stimuli used in the categorization task were delivered passively. Few neurons with nondifferential discharges, and none of the differential neurons, responded in this condition. In a visually cued control task we studied the possibility that the differential responses were associated with the intention to press or with the trajectory of the hand to one of the target switches. In this condition, a light turned on instructed the animal which target switch to press for a reward. Very few neurons in both hemispheres maintained the differential responses observed during the categorization task. Those neurons that discharged selectively for low or high speeds were analyzed quantitatively to produce a measure comparable with the psychometric function. The thresholds of the resulting neurometric curves for the neuronal populations were very similar to the psychometric thresholds. The activity of a large fraction of these neurons could be used to accurately predict whether the stimulus speed was low or high. The results indicate that the putamen, both contralateral and ipsilateral to the stimulated hand, contains neurons that discharge in response to the somesthetic stimuli during the categorization task. Those neurons that respond irrespective of the stimulus speed appear to be involved in the general sensorimotor behavior of the animal during the execution of the task. The results suggest that the putamen may play a role in bimanual tasks. The recording of neurons in the right and left putamen whose activities correlate with the speed categories suggests that this region of the basal ganglia, in addition to its role in motor functions, is also involved in the animal's decision process.  相似文献   

4.
We propose that the descending command from area 4 that is responsible, in part, for the change in limb trajectory required to step over an obstacle in one's path also plays a role in triggering the anticipatory postural modifications that accompany this movement. To test this hypothesis, we recorded the discharge characteristics of identified classes of corticofugal neurons in area 4 of the cat. Neurons were identified either as: pryamidal tract neurons (PTNs) if their axon projected to the caudal pyramidal tract (PT) but not to the pontomedullary reticular formation (PMRF); as corticoreticular neurons (CRNs) if their axon projected to the PMRF but not to the PT; and as PTN/CRNs if their axon projected to both structures. Altogether, the discharge properties of 212 corticofugal neurons (109 PTNs, 66 PTN/CRNs, and 37 CRNs) within area 4 were recorded during voluntary gait modifications. Neurons in all three classes showed increases in their discharge frequency during locomotion and included groups that increased their discharge either during the swing phase of the modified step, during the subsequent stance phase, or in the stance phase of the cycle preceding the step over the obstacle. A slightly higher percentage of CRNs (39%) discharged in the stance phase prior to the gait modification than did the PTNs or PTN/CRNs (20% and 17% respectively). In 37 electrode penetrations, we were able to record clusters of 3 or more neurons within 500 micro(m) of each other. In most cases, PTN/CRNs recorded in close proximity to PTNs had similar receptive fields and discharged in a similar, but not identical, manner during the gait modifications. Compared with adjacent PTNs, CRNs normally showed a more variable pattern of activity and frequently discharged earlier in the step cycle than did the PTNs or PTN/CRNs. We interpret the results as providing support for the original hypothesis. We suggest that the collateral branches to the PMRF from corticofugal neurons with axons that continue at least as far as the caudal PT provide a signal that could be used to trigger dynamic postural responses that are appropriately organized and scaled for the movements that are being undertaken. We suggest that the more variable and earlier discharge activity observed in CRNs might be used to modify the postural support on which the movements and the dynamic postural adjustments are superimposed.  相似文献   

5.
Single units were recorded extracellularly from area 17 and lateral suprasylvian area (LSSA) in curarized cats. Visual stimuli, usually a 10 degree black spot, were introduced abruptly in the visual field remote from the discharge area of a neuron's receptive field and moved at a speed of about 30 degrees/sec. The effect of these remote stimuli (S2) on the reponse to a restricted visual stimulus (S1) crossing the discharge area was studied. It was found that most units in area 17 were not affected by the presentation of remote stimuli, the remainder being either slightly facilitated or slightly inhibited. In contrast the LSSA neurons were usually inhibited by the presentation of S2: this effect was strong, was present in all classes of LSSA neurons and was independent of the relative directions of movement of S1 and S2. On the basis of these data and those previously obtained from the superior colliculus it is concluded that the way the extrageniculate centres respond to a stimulus abruptly introduced in the visual field is substantially different from that of the striate cortex. Only in the extrageniculate centres a new stimulus, besides exciting the neurons which correspond to the position of the stimulus in the field, concomitantly decreases the responses of neurons located in positions of the visual field remote from that stimulus. Possible behavioral implications of the findings are discussed.  相似文献   

6.
1. The effect of covert attention was studied in area 7a of the posterior parietal cortex of rhesus monkeys performing a spatial match-to-sample task. The task required the animals to fixate a central target light, to detect and remember the location of a transient spatial cue, and to respond when one of a series of stimuli appeared at the cued location. Neuronal responses evoked by the visual stimuli were recorded during each behavioral trial. 2. Thirty-eight percent of the neurons isolated and studied in these experiments responded to visual stimuli. The responses of 55% of the neurons tested were suppressed, and 5% enhanced for stimuli presented at the attended location. Responses in the remaining neurons (40%) were unaffected by shifts in attention. 3. Activity in 57% of the suppressed neurons was reduced to rates not significantly different from spontaneous activity. 4. The extent of suppression for individual neurons was often restricted to the attended portion of the receptive field. 5. These data suggest a potential role for these neurons in the redirection of visual attention.  相似文献   

7.
We studied the dynamical relationship between magnocellular red nucleus (RNm) discharge and electromyographic (EMG) activity of 10-15 limb muscles in two monkeys during voluntary limb movement. Recordings were made from 158 neurons during two different kinds of limb movement tasks. One was a tracking task in which the subjects were required to acquire targets displayed on an oscilloscope by rotating one of six different single degree of freedom manipulanda. During this task, we recorded the angular position of the manipulandum. The monkeys also were trained in several free-form food-retrieval tasks that were much less constrained mechanically. There was generally significantly greater neuronal discharge during the free-form tasks than during the tracking task. During both types of tasks, cross-correlation and impulse response functions calculated between RNm and EMG were predominantly pulse-shaped, indicating that the dynamics of the RNm discharge were very similar to those of the muscle activity. There was no evidence during either task for a substantial dynamical transformation (e.g., integration) between the two signals as had been previously suggested. In only 15% of the cases, did these correlations have step or pulse-step dynamics. There was a relatively broad, unimodal distribution of lag times between RNm and EMG, based on the time of occurrence of the peak correlation. During tracking, the mode of this distribution was approximately 50 ms, with 80% of the lags falling between -100 and 200 ms. During the free-form task, the mode was between 0 and 20 ms, with 65% of the lags between -100 and 200 ms. A positive lag indicates that RNm discharge preceded EMG. The shape and timing of both the cross-correlation and the impulse response functions were consistent with a model in which many RNm neurons contribute mutually correlated signals which are simply summed within the spinal cord to produce a muscle activation signal.  相似文献   

8.
Single cell activity was recorded from the primate putamen, caudate nucleus, and globus pallidus during a precued reaching movement task. Two monkeys were trained to touch one of several target knobs mounted in front of them after an LED was lighted on the correct target. A precue was presented prior to this target "go cue" by a randomly varied delay interval, giving the animals partial or complete advance information about the target for the movement task. The purpose of this design was to examine neuronal activity in the major structures of the basal ganglia during the preparation phase of limb movements when varying amounts of advance information were provided to the animals. The reaction times were shortest with complete precues, intermediate with partial precues, and longest with precues containing no information, demonstrating that the animals used precue information to prepare partly or completely for the reaching movement before the target go cue was given. Changes in activity were seen in the basal ganglia during the preparatory period in 30% of neurons in putamen, 31% in caudate nucleus, and 27% in globus pallidus. Preparatory changes were stronger and more closely linked to the time of movement initiation in putamen than in caudate nucleus. Although the amount of information contained in the precues had no significant effect on preparatory activity preceding the target go cue, a directional selectivity during this period was observed for a subset of neurons with preparatory changes (15% in putamen, 11% in caudate nucleus, 14% in globus pallidus) when the precue contained information about the upcoming direction of movement. A smaller subset of neurons showed selectivity for the preparation of movement amplitude. A larger number of preparatory changes showed selectivity for the direction or amplitude of movement following the target go cue than in the delay period before the cue. The intensity of preparatory changes in activity in many cases depended on the length of the delay interval preceding the target go cue. Even following the target go cue, the intensity of the preparatory changes in activity continued to be significantly influenced by the length of the preceding delay interval for 11% of changes in putamen, 8% in caudate nucleus, and 18% in globus pallidus. This finding suggests that preparatory activity in the basal ganglia takes part in a process termed motor readiness. Behaviorally, this process was seen as a shortening of reaction time regardless of precue information for trials in which the delay interval was long and the animals showed an increased readiness to move.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Nonsimultaneous two-tone interactions were studied in the primary auditory cortex of anesthetized cats. Poststimulatory effects of pure tone bursts (masker) on the evoked activity of a fixed tone burst (probe) were investigated. The temporal interval from masker onset to probe onset (stimulus onset asynchrony), masker frequency, and intensity were parametrically varied. For all of the 53 single units and 58 multiple-unit clusters, the neural activity of the probe signal was either inhibited, facilitated, and/or delayed by a limited set of masker stimuli. The stimulus range from which forward inhibition of the probe was induced typically was centered at and had approximately the size of the neuron's excitatory receptive field. This "masking tuning curve" was usually V shaped, i.e., the frequency range of inhibiting masker stimuli increased with the masker intensity. Forward inhibition was induced at the shortest stimulus onset asynchrony between masker and probe. With longer stimulus onset asynchronies, the frequency range of inhibiting maskers gradually became smaller. Recovery from forward inhibition occurred first at the lower- and higher-frequency borders of the masking tuning curve and lasted the longest for frequencies close to the neuron's characteristic frequency. The maximal duration of forward inhibition was measured as the longest period over which reduction of probe responses was observed. It was in the range of 53-430 ms, with an average of 143 +/- 71 (SD) ms. Amount, duration and type of forward inhibition were weakly but significantly correlated with "static" neural receptive field properties like characteristic frequency, bandwidth, and latency. For the majority of neurons, the minimal inhibitory masker intensity increased when the stimulus onset asynchrony became longer. In most cases the highest masker intensities induced the longest forward inhibition. A significant number of neurons, however, exhibited longest periods of inhibition after maskers of intermediate intensity. The results show that the ability of cortical cells to respond with an excitatory activity depends on the temporal stimulus context. Neurons can follow higher repetition rates of stimulus sequences when successive stimuli differ in their spectral content. The differential sensitivity to temporal sound sequences within the receptive field of cortical cells as well as across different cells could contribute to the neural processing of temporally structured stimuli like speech and animal vocalizations.  相似文献   

10.
To analyze the discharge patterns of the reticulospinal (R-S) neurons associated with four-limb movement, we recorded the unit spikes of 108 R-S neurons in 18 thalamic cats. (1) Unit spikes of R-S neurons exhibited alternating firings during leg movements, not only stepping on the treadmill but also upon passive flexion and extension movement by the experimenter's hand. (2) R-S neurons manifested firing patterns associated with diagonal, reciprocal and quadrupedal leg movements. About half of the neurons showed reciprocal patterns upon bilateral forelimb movements; spikes were increased when the ipsilateral forelimb was in a backward position; they were decreased when that leg was in a forward position. In contrast, the spikes were increased when the contralateral forelimb was placed forward and decreased when it was backward. About 15% of the R-S neurons showed discharge patterns correlated with quadrupedal leg movements. Firing increased when the left forelimb and right hindlimb were placed backward and the left hindlimb and right forelimb were forward. In contrast, when the position of all 4 limbs was reversed, firing rates decreased. (3) When brief touch stimulation was applied to the skin around the leg, bursting spikes were obtained; these were suppressed upon touching the skin of the contralateral limb. Even after transection of the muscle nerves, alternating firings were observed. (4) Local anesthesia to the shoulder joint resulted in a marked reduction of spontaneous discharges and alternating firings. (5) Our results indicate that afferents of joints and of cutaneous origins in individual limbs ascend to the brainstem reticular formation, that integrative action is organized as pattern generation in that region, and that this patterned information is sent to the spinal cord via the reticulospinal tracts.  相似文献   

11.
The purpose of these experiments was to define the topography of cuneate and spinal projections to the forelimb representation in the rostral dorsal accessory olive (rDAO). We were interested in determining whether the spinal and cuneate inputs constitute a homogeneous afferent source, and whether there is evidence that they serve different functional roles. We were also interested in determining whether the somatotopy of rDAO is the result of a point-to-point projection from its afferent sources, or whether the projection suggests a reorganization of afferents at the olive. Single unit recording was used to identify specific regions of rDAO, and the topography of inputs to the identified regions was determined by using wheat germ agglutinin-horseradish peroxidase (WGA-HRP) as a tracer. The results from retrograde tracing were confirmed by using WGA-HRP as an anterograde tracer from input sources. The cuneate and spinal neurons providing input to rDAO constitute two distinct neural populations. One consists of cells in the caudal cuneate nucleus and lamina VI of the rostral two cervical segments, the other consists of cells in the rostral cuneate nucleus. The cells in the caudal cuneate nucleus and the rostral cervical segments are large, multipolar neurons that form a single column of rDAO input cells. The column of cells projects to the contralateral rDAO in a topographic fashion with rostral regions of the column projecting to rostral rDAO, which contains cells that respond to somatosensory stimulation of the contralateral shoulder, trunk, and proximal forelimb. Caudal regions of the column project to caudal rDAO, which contains cells that respond to stimulation of the distal forelimb. Despite this topography, there is a large degree of overlap in the terminations from neighboring regions of the input column, indicating that a major reorganization occurs at the rDAO. The projection from the rostral cuneate nucleus arises from small neurons that project bilaterally to rDAO, and the input from the rostral cuneate nucleus lacks a clear topography. We propose that input from the cell column is responsible for the somatosensory sensitivity of rDAO neurons, whereas input from rostral cuneate is most likely modulatory, probably inhibitory, in nature.  相似文献   

12.
Visual responses and eye movement (EM) -related activities were studied in single units of the superior colliculus (SC) of alert cats. Spontaneous EMs were encouraged by training. Throughout the SC (i.e., in intermediate and deep layers as well as in superficial layers), units were found to respond well to visual stimuli. Strong and consistent responses could be elicited by very dim, low-contrast stationary stimuli. Visual responses varied from phasic to tonic; some units responded tonically to stationary stimuli in the center of the receptive field, and phasically to peripheral stimuli. Many cells responded more vigorously to moving than to stationary stimuli, but very few responded exclusively to stimulus movement. The vast majority of cells were directionally selective. A small number of units were sensitive to the absolute, as well as the retinal, position of visual stimuli. These cells were activated by visual stimuli which fell in the receptive field only if the cat's gaze was fixated on one half of the screen. It seems that these cells must receive information about both eye position and the retinal (receptive field) position of the stimulus. It is possible that they reflect coding of target location within a head (or body) frame of reference. EM-related units were of two types: (1) about 20% of the sample responded prior to spontaneous or visually-triggered EMs, and (2) another 10% (or more) responded with, but not before, EMs. Some cells in the second group discharge almost synchronously with EMs and, thus, cannot plausibly be said to respond to the movement of images across the retina. All cells in the first group were directionally selective. The percentage of EM-related cells in the deep layers of SC is lower in cat than in monkey. Possible reasons for such differences are discussed.  相似文献   

13.
A population of neurons in the principal somatosensory nucleus of human thalamus (ventralis caudalis, Vc) had a significant tonic, graded response to cool stimuli and also responded to innocuous mechanical stimuli (mechanical-cool neurons). These neurons were clustered at the dorsal aspect of medial Vc. Stimulation at the sites where these neurons were recorded evoked tingling sensations in the part of the body including or adjacent to the receptive field of these neurons. These neurons may contribute to the mechanism that mediates the perception of cold in man.  相似文献   

14.
Observations of single neurons in the primary motor cortex of 1 monkey provided evidence that preliminary perceptual information reaches the motor system before perceptual analysis is complete. Neurons were recorded during a task in which 1 stimulus was assigned to a wrist flexion response and another was assigned to wrist extension. Two stimuli were assigned to a no-go response; each was visually similar to either the flexion or the extension stimulus. When a no-go stimulus was presented, neurons responded with weaker versions of the discharge patterns exhibited to the visually similar stimulus requiring a movement, suggesting that neurons receive partial perceptual information favoring that movement. Functionally separate neuronal populations were identified, and differences in the activations of these provide evidence about the functional effects of preliminary perceptual output on movement control processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
The voluntary control of gaze implies the ability to make saccadic eye movements specified by abstract instructions, as well as the ability to repress unwanted orientating to sudden stimuli. Both of these abilities are challenged in the antisaccade task, because it requires subjects to look at an unmarked location opposite to a flashed stimulus, without glancing at it. Performance on this task depends on the frontal/prefrontal cortex and related structures, but the neuronal operations underlying antisaccades are not understood. It is not known, for example, how excited visual neurons that normally trigger a saccade to a target (a prosaccade) can activate oculomotor neurons directing gaze in the opposite direction. Visual neurons might, perhaps, alter their receptive fields depending on whether they receive a pro- or antisaccade instruction. If the receptive field is not altered, the antisaccade goal must be computed and imposed from the top down to the appropriate oculomotor neurons. Here we show, using recordings from the supplementary eye field (a frontal cortex oculomotor centre) in monkeys, that visual and movement neurons retain the same spatial selectivity across randomly mixed pro- and antisaccade trials. However, these neurons consistently fire more before antisaccades than prosaccades with the same trajectories, suggesting a mechanism through which voluntary antisaccade commands can override reflexive glances.  相似文献   

16.
This study analyzed changes in the performance of a reaching task and its adaptive modification produced by reversible inactivation of three sites within the forelimb representation of the motor cortex (MCx, area 4 gamma) in five cats by microinjections of muscimol. Two sites were located in the lateral MCx, rostral (RL-MCx) and caudal (CL-MCx) to the end of the cruciate sulcus, where intracortical microstimulation (ICMS) produced contraction of the most distal muscles. The third site was located more medially, in the anterior sigmoid gyrus (RM-MCx) where ICMS primarily produced contraction of more proximal muscles. The task required the animals to reach into a horizontal target well, located in front of them at one of three possible heights, to grasp and retrieve a small piece of food. The height of the reach was primarily achieved by elbow flexion. Grasping consisted primarily of digit flexion, and food retrieval consisted of forearm supination and shoulder extension. In some blocks of trials, an obstacle was placed in the path of the limb to assess the animal's ability to adaptively adjust the kinematic characteristics of their response trajectory. In normal animals, contact with the bar on the first trial triggered a corrective response at short latency that allowed the paw to circumvent the bar. On all subsequent trials, the trajectory was adapted to prevent contact with the obstacle, with a safety margin of about 1 cm. Inactivation at all sites produced a slowing of movement, a protracted and extended forelimb posture, and increased variability of initial limb position. In addition, inactivation of RL-MCx immediately produced systematic reaching errors, consisting of hypermetric movements, as well as impaired grasping and food retrieval. The degree of hypermetria was similar for all target heights and was not associated with alterations in trajectory control. During inactivation, animals did not compensate for the hypermetria by reducing paw path elevation, suggesting a defect in kinematic planning or in adaptive control. This was confirmed by finding that trajectory adaptation to avoid bar contact was impaired during RL-MCx inactivation. The short latency corrective response, triggered by contact of the limb with the obstacle was, however, preserved. Inactivation of CL-MCx did not impair aiming, grasping, or adaptation immediately after injection. However, impairments occurred after about 1 h postinjection, and at that time mimicked the effects of RL-MCx inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Examined the effects of conditioning on the discharges of single neurons in primary auditory cortex during acquisition of the pupillary conditioned response in 8 chronically prepared cats. Acoustic stimuli (1-sec white noise or tone) were presented with electrodermal stimulation unpaired during a sensitization control phase followed by pairing during a subsequent conditioning phase. Stimulus constancy at the periphery was ensured by the use of neuromuscular blockade. Discharge plasticity developed rapidly for both evoked and background activity, the former attaining criterion faster than the latter. The pupillary dilation conditioned response was acquired at the same rate as were changes in evoked activity (i.e., 10–25 trials) and faster than background activity (i.e., 20–25 trials). Increases in background activity were correlated with increasing level of tonic arousal, as indexed by pretrial size of the pupil. A following paper by D. M. Diamond and N. M. Weinberger (see record 1985-03268-001) examined neuronal discharge in the secondary auditory cortical field. (69 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Studies are reviewed, predominantly involving healthy humans, on gain changes in spinal reflexes and supraspinal ascending paths during passive and active leg movement. The passive movement research shows that the pathways of H reflexes of the leg and foot are down-regulated as a consequence of movement-elicited discharge from somatosensory receptors, likely muscle spindle primary endings, both ipsi- and contralaterally. Discharge from the conditioning receptors in extensor muscles of the knee and hip appears to lead to presynaptic inhibition evoked over a spinal path, and to long-lasting attenuation when movement stops. The ipsilateral modulation is similar in phase to that seen with active movement. The contralateral conditioning does not phase modulate with passive movement and modulates to the phase of active ipsilateral movement. There are also centrifugal effects onto these pathways during movement. The pathways of the cutaneous reflexes of the human leg also are gain-modulated during active movement. The review summarizes the effects across muscles, across nociceptive and non-nociceptive stimuli and over time elapsed after the stimulus. Some of the gain changes in such reflexes have been associated with central pattern generators. However, the centripetal effect of movement-induced proprioceptive drive awaits exploration in these pathways. Scalp-recorded evoked potentials from rapidly conducting pathways that ascend to the human somatosensory cortex from stimulation sites in the leg also are gain-attenuated in relation to passive movement-elicited discharge of the extensor muscle spindle primary endings. Centrifugal influences due to a requirement for accurate active movement can partially lift the attenuation on the ascending path, both during and before movement. We suggest that a significant role for muscle spindle discharge is to control the gain in Ia pathways from the legs, consequent or prior to their movement. This control can reduce the strength of synaptic input onto target neurons from these kinesthetic receptors, which are powerfully activated by the movement, perhaps to retain the opportunity for target neuron modulation from other control sources.  相似文献   

19.
Neuronal properties and topographic organization of the middle suprasylvian gyrus (cortical cytoarchitectonic field 7) were studied in three behaving cats with painlessly fixed heads. Two main neuronal types were found within this field. Type 1 neurons occupied the lateral part of the field and bordered representation of directionally selective neurons of the lateral suprasylvian visual area by vertical retinal meridian. Type 1 neurons had elongated and radially oriented receptive fields located in the lower part of contralateral visual field. Type 1 neurons preferred stimuli moving out or to the centre of gaze at a low or moderate speed, and many of them were depth selective. The responses were enhanced by attention, oriented to the presented stimulus. Medial part of the field 7 along the border with the area V3 was occupied by neurons with not elongated receptive fields (type 2). These neurons preferred moderate and high speeds of motion, and gratings of proper spatial frequency and orientation were effective stimuli for them. Border between representations of type 2 and type 1 neurons coincided with projection of horizontal retinal meridian. At the rostral and caudal borders of the field 7 abrupt changes of neuronal properties took place. Neurons which abutted field 7 anteriorly and posteriorly resembled hypercomplex cells and their small receptive fields were located in the central part of the visual field. Topographical considerations and receptive field properties allowed us to conclude that the medial part of the field 7 (included type 2 neurons) is functionally equivalent to the area V4 in the cortex of primates, while the lateral part (type 1 neurons) may correspond to the area V4T.  相似文献   

20.
Both accidental and experimental lesions of the spinal cord suggest that neuronal processes occurring in the spinal cord modify the relay of information through the dorsal column-lemniscal pathway. How such interactions might occur has not been adequately explained. To address this issue, the receptive fields of mechanosensory neurons of the dorsal column nuclei were studied before and after manipulation of the spinal dorsal horn. After either a cervical or lumbar laminectomy and exposure of the dorsal column nuclei in anesthetized cats, the representation of the hindlimb or of the forelimb was defined by multiunit recordings in both the dorsal column nuclei and in the ipsilateral spinal cord. Next, a single cell was isolated in the dorsal column nuclei, and its receptive field carefully defined. Each cell could be activated by light mechanical stimuli from a well-defined cutaneous receptive field. Generally the adequate stimulus was movement of a few hairs or rapid skin indentation. Subsequently a pipette containing either lidocaine or cobalt chloride was lowered into the ipsilateral dorsal horn at the site in the somatosensory representation in the spinal cord corresponding to the receptive field of the neuron isolated in the dorsal column nuclei. Injection of several hundred nanoliters of either lidocaine or cobalt chloride into the dorsal horn produced an enlargement of the receptive field of the neuron being studied in the dorsal column nuclei. The experiment was repeated 16 times, and receptive field enlargements of 147-563% were observed in 15 cases. These data suggest that the dorsal horn exerts a tonic inhibitory control on the mechanosensory signals relayed through the dorsal column-lemniscal pathway. Because published data from other laboratories have shown that receptive field size is controlled by signals arising from the skin, we infer that the control of neuronal excitability, receptive field size and location for lemniscal neurons is determined by tonic afferent activity that is relayed through a synapse in the dorsal horn. This influence of dorsal horn neurons on the relay of mechanosensory information through the lemniscal pathways must modify our traditional views concerning the relative independence of these two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号