首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
EMG增容制备PPS/PA66合金的研究   总被引:2,自引:0,他引:2  
采用乙烯-马来酸酐-甲基丙烯酸缩水甘油酯三元共聚物(EMG)作为增容剂,制备了聚苯硫醚(PPS)/尼龙66(PA66)合金.并对该合金的力学性能、微观结构形态进行了研究.结果表明:EMG对PPS/PA66体系有很好的增容作用,能改善PPS/PA66合金的力学性能,并且增容后,PPS/PA66的界面结合明显增强;EMG的含量越多,增容效果越显著.  相似文献   

2.
CPPS/PA1010/EMG合金的制备与性能表征   总被引:3,自引:1,他引:2  
采用(乙烯/马来酸酐/甲基丙烯酸缩水甘油酯)三元共聚物(EMG)为增容剂,与PA1010和化学处理的PPS(CPPS)熔融共混制备了CPPS/PA1010/EMG合金。当EMG含量为9份时,制备的高刚性、高韧性合金在保持其它力学性能基本不变的情况下其冲击强度提高了4.5倍;并研究了该合金的熔融结晶行为和热降解行为。  相似文献   

3.
研究了增容剂乙烯(E)-丙烯酸酯(MA)-甲基丙烯酸缩水甘油酯(GMA)共聚物(E-MA-GMA)对聚苯硫醚(PPS)/聚酰胺(PA)66共混体系的相容性、力学性能、热性能、流变性能的影响。结果表明,增容剂的加入,增加了共混体系的相容性,提高了共混物的力学性能;DSC结果表明,E-MA-GMA影响共混体系的结晶和熔融行为;流变性能测试结果表明,增容PPS/PA66共混体系是假塑性流体,E-MA-GMA用量增加,使共混体系的表观黏度增大。  相似文献   

4.
《塑料科技》2016,(10):34-38
分别以乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯(E-MA-GMA)、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯(StAN-GMA)以及苯乙烯-(乙烯-丁烯)-苯乙烯嵌段共聚物接枝马来酸酐(SEBS-g-MAH)为相容剂,采用熔融共混的方法制备了改性聚苯硫醚/聚酰胺66(PPS/PA66)共混物。通过毛细管流变分析,研究了PPS及相容剂用量对PPS/PA66共混物流变性能的影响。结果表明:PPS/PA66共混体系为非牛顿假塑性流体,其表观黏度随剪切速率的增大而减小;随着PPS用量的增加,共混体系的非牛顿指数降低,其流变性能逐渐偏离牛顿型流体;随着相容剂用量的增加,PPS/PA66/E-MA-GMA体系的熔体黏度明显增大,PPS/PA66/St-AN-GMA体系的熔体黏度则先下降后上升,而PPS/PA66/SEBS-g-MAH体系的熔体黏度变化不大。  相似文献   

5.
PA66/E-RTMB增韧体系的化学结构及性能   总被引:1,自引:1,他引:0  
用环氧化合物与助反应剂配比(C/R)不同的E型反应性增韧母料(E-RTMB)与PA66热机械反应性共混制备出了PA66/E-RTMB(C/R)增韧体系,研究了PA66/E-RTMB(C/R)增韧体系的化学结构、熔体质量流动速率(MFR)、力学性能及非等温熔融和结晶行为.结果表明,PA66/E-RTMB中E-RTMB与PA66间形成了化学键连接;与原料PA66相比,PA66/E-TMB(C/R)增韧体系的MFR显著减小,悬臂梁缺口冲击强度显著提高,拉伸屈服应力及弯曲模量稍有降低;与原料PA66、HDPE相比,PA66/E-RTMB(C/R)增韧体系中PA66、HDPE的熔点有所降低,热结晶起始温度有不同程度的提高,HDPE的结晶过程很弥散,PA66晶核形成及晶体生长速率明显提高;E-RTMB的C/R对PA66/E-RTMB(C/R)增韧体系的MFR、冲击强度及PA66、HDPE的非等温熔融和结晶行为有明显影响.  相似文献   

6.
PPS/PA66/HNTs复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
采用熔融共混方法制备了聚苯硫醚(PPS)/尼龙-66(PA66)/埃洛石纳米管(HNTs)复合材料,研究了其力学性能、热性能及其微观形态.结果表明:当PPS/PA66的比为60/40、HNTs的含量为30%时,复合材料具有较好的性能.复合材料的拉伸强度、弯曲模量及缺口抗冲击强度相对纯PPS分别提高了36.6%、163....  相似文献   

7.
采用苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯(St-AN-GMA)作为聚苯硫醚/尼龙66(PPS/PA66)的相容剂,并研究其对共混物结构与性能的影响。通过对共混物力学性能、相容性、热性能、断面形貌的研究表明:当St-AN-GMA质量分数在4%左右时,共混物的综合力学性能较好;随着St-AN-GMA用量的增加,共混物中PPS与PA66的玻璃化转变温度(θg)相互靠近,改善了共混物的相容性;St-AN-GMA影响了共混物的结晶与熔融行为;St-AN-GMA的加入有利于PA66在PPS中的分散,且分散相粒径尺寸较小。  相似文献   

8.
用差示扫描量热法(DSC)研究了聚苯硫醚(PPS)/聚酰胺(PA)6共混物熔融多峰行为,PPS及其共混物均出现熔融多峰现象。但共混物呈现更加复杂的熔融行为,虽然退火结晶温度,时间和DSC扫描速率不同,但共混物中PPS的低温熔融峰温明显地比纯PPS的高,认为PA6与PPS间的相互作用促使PPS无定形态的退火结晶完善性提高。熔融多峰现象用重组机理来解释。  相似文献   

9.
通过合金化增韧改性PPS。在聚苯硫醚(PPS)中加入聚酰胺(PA46)和增容剂苯乙烯-乙烯-丁二烯-苯乙烯接枝马来酸酐(SEBS-g-MAH),通过熔融共混制备了PPS/SEBS-g-MAH/PA46合金;进一步使用二苯基甲烷二异氰酸酯(MDI)对PPS树脂进行活化处理,之后同样制备了活化PPS/SEBS-g-MAH/PA46合金。测试了合金的力学性能和热性能,并用扫描电镜观察了合金的微观结构形态。结果表明,加入增容剂后,合金的冲击强度有所提高;PPS树脂经过MDI活化后,合金的性能显著提高;当活化PPS/PA46质量比为70/30、SEBS-g-MAH质量分数为9%时,能制备出综合性能优良的合金材料,其冲击强度为8.4 kJ/m2,拉伸强度为61.2 MPa,弯曲强度为81.5 MPa,热变形温度为117℃。  相似文献   

10.
《塑料科技》2017,(5):36-40
采用熔融共混的方法制备了玄武岩纤维(BF)增强聚苯硫醚(PPS)复合材料。考察了BF用量对PPS/BF复合材料力学性能、热性能和结晶性能的影响,以及硅烷偶联剂和填料种类对PPS/BF复合材料力学性能的影响。结果表明:复合材料的拉伸强度、弯曲强度、冲击强度、负荷变形温度和分解温度均随BF用量的增加而提高;硅烷偶联剂KH560的加入可以改善复合材料的力学性能。在PPS/BF体系中添加玻璃纤维可以进一步提高材料的力学强度;在PPS/BF体系中添加甲基丙烯酸缩水甘油酯接枝乙烯-辛烯共聚物(POE-g-GMA)可以提高复合材料的无缺口冲击强度。通过差示扫描量热(DSC)测试发现,BF具有异相成核作用,可以促进树脂结晶并提高结晶速率。  相似文献   

11.
In this article, a terpolymer of ethylene, maleic anhydride, and glycidyl methacrylate (EMG) was used to enhance the compatibilization between poly(phenylene sulfide) (PPS) and polyamide‐66 (PA66). The mechanical properties, morphology, crystalline and melting behavior, and rheology of blends were discussed. The results showed that EMG was a good compatibilizer for PPS and PA66 through chemical reaction with them. The new generated polymer could prevent the aggregation of dispersed particles and reinforce the interface bonding. In addition, it could not only act as a nucleating agent for PA66 to refine its spherulites and improve its crystallinity but also promote the apparent viscosity of blends and enhance the non‐Newtonian behavior. The results will be useful to make high performance PPS/PA66 alloy with low cost and enlarge the application scope of PPS and PA66 resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The crystalline morphologies of isothermally and nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with polyamide 66 (PA66) were investigated by polarized optical microscopy with a hot stage. The spherulite superstructure of PPS was greatly affected by crystallizable PA66; a Maltese cross was not clear, and the impingement between spherulites disappeared. This could be ascribed to the formation of small crystals of PA66, which filled in the PPS lamellae. The nonisothermal crystallization behavior was also measured by differential scanning calorimetry. The presence of PA66 changed the nonisothermal crystallization process of PPS. The maximum crystallization temperature of the PPS phase in the blend was higher that that of neat PPS, and this indicated that PA66 acted as a nucleus for PPS. Also, the compatibilizer poly(ethylene‐stat‐methacrylate) (EMA) was added to modify the interfacial interplay of the PA66/PPS blend system. The addition of EMA greatly influenced the nonisothermal crystallization process of the PPS phase in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The mechanical and tribological properties of 70 vol % PA66/30 vol % PPS blend filled with different content of polytetrafluoroethylene (PTFE) were studied in this paper. It was found that the addition of PTFE impairs the mechanical properties of PA66/PPS blend, but greatly increases the wear resistance and decreases the friction coefficient. When PTFE content exceeds 20 vol %, the friction coefficient of composite is minimum (0.15) and lower than that of pure PTFE under the same conditions (0.22). The lowest wear volume (0.44 mm3) is obtained with PA66/PPS/30 vol % PTFE composite, which decreased by 91% compared with unfilled PA66/PPS blend (4.99 mm3). The topography of transfer film and the elemental distribution were investigated by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS), respectively. Because of the characteristic crystalline structure, PTFE preferentially transferred to the steel ring surface and formed a thin, uniform and firmly adhered transfer layer, which reduced the ability of PA66/PPS blend to transfer and prevent the adhesion between the sample and the couterface. In addition, the superior lubrication of PTFE inhibited the frictional heat melting during sliding. All these aspects are close related to the friction and wear behavior of PA66/PPS/PTFE composite. Upon the addition of PTFE, thermal control of friction regime is not applicable to the PA66/PPS blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 969–977, 2006  相似文献   

14.
Although there are many studies on the multiple melting behavior of polyphenylene sulfide (PPS) homopolymer, similar investigations on PPS component in PPS blends with thermoplastics are relatively rare. In the present paper, the multiple melting behavior of PPS blends with polyamide 6 (PA6) have been investigated by differential scanning calorimetry (DSC). The double melting peaks are also observed for PPS in the blends. Although the annealing temperature and time as well as the heating rate of DSC scanning are different, the lower melting peak temperature of PPS in the blend is higher than that of pure PPS and the higher melting peak temperature is lower than that of pure PPS. It is suggested that PA6 can accelerate the cold‐crystallization of amorphous PPS due to the possible presence of interfacial interaction between the component polymers to induce the heterogeneous nucleation, and increase the perfection of PPS crystals. The multiple melting behavior of PPS in the blends are explained by recrystallization. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1579–1585, 2000  相似文献   

15.
Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on block‐on‐ring sliding wear tester. The results showed that 20–30 vol % GF greatly increases the mechanical properties of PA66/PPS blend. When GF content is 20 vol %, the friction coefficient of composite is the lowest (0.35), which is decreased by 47% in comparison with the unfilled blend. The wear volume of the GF‐reinforced PA66/PPS blend composite decreases with the increase of GF content. However, the wear‐resistance is not apparently improved by the addition of GF in the experimental range for comparison with unfilled PA66/PPS blend. The worn surface and the transfer film on the counterface were examined by scanning electron microscopy (SEM). The observations revealed that the friction coefficient of composite depends on the formation and development of a transfer film. The wear mechanism involves polymer matrix wear and fiber wear. The former consists of melting wear and plastic deformation of the matrix, while the latter includes fiber sliding wear, cracking, rupturing, and pulverizing. The contributions of the matrix wear and the fiber wear determine the ultimate wear volume of PA66/PPS/GF composite. In addition, the abrasive action caused by the ruptured glass fiber is also a very important factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 523–529, 2006  相似文献   

16.
The mechanical and tribological properties of carbon fiber (CF) reinforced polyamide 66 (PA66)/polyphenylene sulfide (PPS) blend composite were studied in this article. It was found that CF reinforcement greatly increases the mechanical properties of PA66/PPS blend. The friction coefficient of the sample decreases with the increase of CF content. When CF content is lower (below 30%), the wear resistance is deteriorated by the addition of CF. However, the loading of higher than 30% CF significantly improves the tribological properties of the blend. The lowest friction coefficient (0.31) and the wear volume (1.05 mm3) were obtained with the PA66/PPS blend containing 30% CF. The transfer film and the worn surface formed by sample during sliding were examined by scanning electron microscopy. The observations revealed that the friction coefficient of PA66/PPS/CF composite depends on the formation and development of a transfer film on the counterface. The abrasive wear caused by ruptured CFs (for lower CF content) and the load bearing ability of CFs (for higher CF content) are the major factors affecting the wear volume. In addition, the improvements of mechanical properties, thermal conductivity, and self‐lubrication of bulk CFs are also contributed to the wear behavior of PA66/PPS/CF composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号