首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以马来酸酐接枝聚丙烯(PP-g-MAH)为相容剂,回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,动态硫化热塑性弹性体(TPV)为增韧材料,制备了rPET/TPV/PP-g-MAH共混物。用SEM、DMA及DSC分析了TPV及PP-g-MAH对rPET断面结构、储能模量和结晶性能的影响,并测试了共混物的力学性能。结果表明:加入9.95%TPV后,rPET/TPV共混物的熔融温度下降了2.33℃,结晶温度提高了2.82℃,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度略有下降;加入PP-g-MAH后,TPV球状粒子嵌入rPET基体材料中,共混物的相容性提高,储能模量明显增大,刚性增强,弯曲强度和拉伸强度有所提高;与纯rPET相比,含1.8%PP-g-MAH的rPET/TPV/PP-g-MAH共混物的断裂伸长率提高了129.06%,缺口冲击强度提高了47.02%。  相似文献   

2.
以回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,茂金属线型低密度聚乙烯(mLLDPE)为共混材料,马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MAH)、丙烯酸酯复合接枝苯乙烯-丁二烯弹性体为相容剂,制备了rPET/mLLDPE共混物。采用DSC和SEM分析了相容剂对共混物结晶性能及断面结构的影响,并检测了共混物的力学性能。结果表明:mLLDPE的加入使得rPET/mLLDPE共混物的熔体结晶峰向右移动,结晶温度提高了29.03℃;相容剂的加入使得共混物中rPET的玻璃化转变温度向低温方向移动,rPET与mLLDPE相容性增强;含3%LLDPE-g-MAH的rPET/mLLDPE共混物中,MAH基团与rPET中的羟基发生接枝反应,相界面模糊,rPET与mLLDPE界面黏结力增强,与纯rPET相比,其断裂伸长率提高了93.73%,缺口冲击强度提高了54.6%。  相似文献   

3.
以马来酸酐接枝线性低密度聚乙烯(MAH-g-LLDPE)为相容剂,回收聚对苯二甲酸乙二醇酯(rPET)为基体材料,茂金属线性低密度聚乙烯(mLLDPE)为增韧材料,制备rPET/mLLDPE塑料合金材料。采用DSC、SEM分析MAH-g-LLDPE对rPET/mLLDPE结晶性能及断面相结构的影响,测试了rPET/mLLDPE材料的流变性能及力学性能。结果表明,mLLDPE的加入使得rPET/mLLDPE熔体结晶峰向右移动,结晶温度提高;MAH-g-LLDPE的加入,共混体系中rPET的玻璃化转变温度(tg)朝低温方向移动,rPET与mLLDPE相容性增强,相界面模糊,界面黏结力强,熔融塑化过程扭矩值增大。含5%MAH-g-LLDPE的rPET/mLLDPE材料,与纯rPET相比,其结晶温度(tc)提高24.73℃,断裂伸长率提高113.6%,缺口冲击强度提高66.48%,柔韧性和抗冲击性能较大幅度提高。  相似文献   

4.
以回收聚对苯二甲酸乙二醇(酯r-PET)为基体材料,乙烯-辛烯共聚(物POE)为增韧材料,乙烯-丙烯酸共聚物(EAA)为相容剂,制备了r-PET/POE/EAA共混材料。用DSC、SEM分析了POE及EAA对r-PET结晶性能、断面结构的影响,并测试了共混材料的力学性能。结果表明:加入12%POE后,r-PET/POE共混材料的熔融温度降低了1.76℃,结晶度降低了16.49%,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度略有下降;在r-PET/POE共混材料中加入1.5%EAA后,POE球状粒子嵌入r-PET基体中,二者相容性提高,结晶速率加快;与纯r-PET相比,r-PET/POE/EAA共混材料的断裂伸长率和缺口冲击强度分别提高了698.01%和227.45%柔,韧性也大幅度提高。  相似文献   

5.
以低密度聚乙烯(LDPE)为基体材料,聚偏氯乙烯(PVDC)为共混材料,马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)为相容剂,采用挤出和注塑成型方法制备LDPE/PVDC/LDPE-g-MAH共混物,考察了共混物的力学性能、阻隔性能、热性能和微观形态结构。结果表明:加入25%PVDC,LDPE/PVDC共混物的熔融温度下降了1.79℃,吸油率降低了9.66%,物理力学性能明显下降;加入LDPE-g-MAH后,LDPE和PVDC之间的界面黏结力增强,相容性提高,结晶温度和结晶度略有下降;与纯LDPE相比,含3%LDPE-g-MAH的LDPE/PVDC共混物的断裂伸长率提高了11.63%,缺口冲击强度提高了13.35%,吸油率下降了16.29%,柔韧性和阻隔性明显提高。  相似文献   

6.
采用熔融共混方法制备一系列尼龙1012(PA1012)/丙烯腈-丁二烯-苯乙烯共聚物(ABS)/苯乙烯-马来酸酐共聚物(SMA)共混物,利用冲击试验仪、示差扫描量热仪(DSC)和扫描电子显微镜(SEM)等手段,探究增容剂SMA和ABS的添加量对PA1012/ABS共混物性能的影响。结果表明,当SMA含量为5%且ABS含量为50%时,PA1012/ABS/SMA共混物的缺口冲击强度最优,为669 J/m;随着SMA含量增加,结晶温度有先增大后减小趋势,并且与纯PA1012相比,PA1012/ABS/SMA共混物结晶温度升高了10℃,促进PA1012结晶;SMA加入后,ABS分散相粒子尺寸减小,PA1012和ABS间界面黏结作用增强,证实SMA对PA1012/ABS有明显增容作用。  相似文献   

7.
以均聚聚丙烯(PP)为原料,乙烯-辛烯嵌段共聚物(OBC)为增韧材料,采用双螺杆挤出和注塑成型方法制备PP/OBC共混材料,用SEM、DSC分析OBC对PP断面相结构和结晶性能的影响,测试共混材料的力学性能.结果表明:OBC在PP基体中分散较均匀,形成了以PP为连续相,OBC为分散相的“海-岛”结构;合20%OBC的PP/OBC共混材料,与纯PP材料相比,熔融峰温度和熔点分别下降了4.47和4.81℃,熔融结晶温度上升2.3℃,缺口冲击强度和断裂伸长率分别提高了142.43%和2.77倍,柔韧性大幅度提高.  相似文献   

8.
通过熔融共混的方法制备了不同配比的聚苯硫醚(PPS)/马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS-g-MAH)共混物,采用热失重方法,分析了SEBS-g-MAH对PPS热稳定性能的影响,并且通过差示扫描量热分析法研究了SEBS-g-MAH对PPS结晶性能的影响,同时研究了PPS/SEBS-g-MAH共混物的力学性能。结果表明,共混物的热稳定性较纯PPS有所下降;PPS结晶峰宽度随SEBS-g-MAH含量的增加先减小后增大,结晶速率和结晶度较纯PPS减小,但对熔点影响较小;SEBS-g-MAH的加入使共混物的缺口冲击强度和断裂伸长率增大,韧性增加。当SEBS-g-MAH含量为40%时,缺口冲击强度为13.1 k J/m2,断裂伸长率为13.7%,但拉伸强度较纯PPS下降,为54.2 MPa。  相似文献   

9.
以回收聚对苯二甲酸乙二酯(rPET)瓶料为基体材料,茂金属线性低密度聚乙烯(mLLDPE)为增韧材料,马来酸酐接枝(乙烯/辛烯)共聚物(MAH-g-POE)为增容剂,制得rPET/mLLDPE/MAH-g-POE复合材料.研究表明,mLLPE的加入使得rPET的结晶温度提高,与纯rPET相比,含质量分数5%MAH-g-POE的rPET/mLLDPE/MAH-g-POE复合材料的结晶温度提高24.39%,缺口冲击强度提高216.6%,断裂伸长率提高14.54倍;MAH-g-POE使rPET/mLLDPE中rPET的玻璃化转变温度向低温方向移动,rPET与mLLDPE的相容性提高,界面粘结力增强,熔融塑化时的扭矩增大.  相似文献   

10.
芳酰胺类化合物对PP/OBC共混材料性能影响   总被引:1,自引:0,他引:1  
张华集  陈鹏  张雯  陈晓  杨莉莉 《塑料工业》2012,40(9):88-91,111
以均聚聚丙烯(PP)为原料,乙烯-辛烯嵌段共聚物(OBC)为增韧材料,芳酰胺类化合物(TMB-5)为成核剂,采用双螺杆挤出和注塑成型方法制备PP/OBC共混材料,用DSC、WAXD和POM分析了TMB-5对PP/OBC共混材料结晶性能、晶型和晶体形态的影响,并测试了共混材料的力学性能。结果表明:随着OBC含量的增加,PP/OBC共混材料缺口冲击强度和断裂伸长率明显增大,拉伸强度和弯曲强度有所下降;含1.0%TMB-5母粒、15%OBC的PP/OBC共混材料,于152℃附近出现β晶型的特征熔融峰,熔融结晶温度比纯PP提高了11.68℃,β晶型相对含量为52.74%,PP球晶尺寸减小,缺口冲击强度和断裂伸长率分别提高了236.46%和256.01%,柔韧性大幅度提高。  相似文献   

11.
以回收聚对苯二甲酸乙二酯( rPET)为基体材料,乙烯-辛烯共聚物(POE)为增韧材料,丙烯酸接枝低密度聚乙烯( LDPE-g-AA)为增容剂,制备了rPET/POE/LDPE-g-AA复合材料.分析了POE、LDPE-g-AA对rPET 玻璃化转变温度、断面相结构、结晶性能、力学性能的影响.结果表明,加入POE...  相似文献   

12.
张华集  陈鹏  张雯  陈晓  李国标 《塑料科技》2012,40(11):49-52
以聚丙烯(PP)为基体材料,乙烯-辛烯嵌段共聚物(OBC)为增韧材料,三元乙丙橡胶接枝马来酸酐共聚物(EPDM-g-MAH)为相容剂,制备了PP/OBC/EPDM-g-MAH复合材料。用DSC、SEM、转矩流变仪分析了OBC及EPDM-g-MAH对PP结晶性能、断面相结构、流变性能的影响,测试了复合材料的力学性能。结果表明:加入15%OBC,PP/OBC复合材料的熔融温度升高了1.63℃,结晶度降低了5.4%,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度有所下降;含4%EPDM-g-MAH的PP/OBC/EPDM-g-MAH复合材料,OBC粒子均匀分散在PP基体中,粒径明显细化,熔融塑化扭矩值降低,结晶速率加快;与纯PP相比,断裂伸长率和缺口冲击强度分别提高了128.57%和107.96%,柔韧性有较大幅度提高。  相似文献   

13.
通过在天然橡胶(NR)分子链上接枝甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA),制备了三种丙烯酸酯接枝改性NR:NR-g-PMMA,NR-g-PBA和NR-g-(PMMA,PBA)。采用核磁共振氢谱对三种接枝物进行了化学结构鉴定。将接枝改性后的NR和未改性的NR与PLA采用哈克密炼机熔融共混,分别制备了PLA/NR,PLA/NR-gPMMA,PLA/NR-g-PBA和PLA/NR-g-(PMMA,PBA)共混物,研究了接枝改性NR和未改性NR含量对共混物力学性能和热性能的影响。各共混物的拉伸弹性模量和拉伸强度均随接枝改性NR和未改性NR含量的增加而降低,断裂伸长率和缺口冲击强度随接枝改性NR和未改性NR含量的增加而提高。其中,PLA/NR-g-PBA共混物的断裂伸长率和缺口冲击强度比其它共混物提高的幅度大,当NR-g-PBA的质量分数为5%时,PLA/NR-g-PBA共混物的断裂伸长率达到78%,缺口冲击强度为5.2 k J/m2,而纯PLA的断裂伸长率仅为7.7%,缺口冲击强度为2.5 k J/m2,说明NR接枝分子柔顺性较高的BA更有利于促进其与PLA共混物的韧性提高。热分析结果表明,PLA/NR-gPBA共混物的热稳定性相比于纯PLA也有所提高。  相似文献   

14.
纳米SiO_2对聚丙烯/环氧树脂共混物性能的影响   总被引:1,自引:1,他引:0  
采用熔融共混法制备了聚丙烯(PP)/环氧树脂(EP)共混物,研究了纳米SiO2对共混物性能的影响。结果表明:与纯PP相比,PP/EP共混物的冲击强度、断裂伸长率及黏度降低,弯曲模量增大;在PP/EP共混物中加入纳米SiO2后,共混物弯曲模量和冲击强度明显提高;将硅烷偶联剂KH550改性的纳米SiO2(SiO2-KH550)添加到共混物中,在EP为17%、SiO2-KH550为7%时,共混物的弯曲模量比纯PP提高了64%;EP降低了PP的结晶温度。  相似文献   

15.
以回收低密度聚乙烯/聚偏氯乙烯(LDPE/PVDC)复合薄膜为基体材料,低密度聚乙烯接枝丙烯酸(LDPE-g-AA)为相容剂,线型低密度聚乙烯(LLDPE)为改性剂,再加入液体钙-锌(Ca-Zn)热稳定剂,通过混合、挤出、注塑工艺制备共混材料。采用刚果红法分析了Ca-Zn稳定剂对复合薄膜中PVDC热稳定性能的影响,并对共混材料的力学性能、阻隔性能和微观形态进行了测试与分析。结果表明:加入1.2份Ca-Zn稳定剂后,共混材料的刚果红试纸起始变色时间和完全变色时间分别延长了67 s和354 s,起始变色温度和完全变色温度分别提高了8℃和11℃;含3%LDPE-g-AA的共混材料,PVDC嵌入LDPE材料中,相容性明显改善,其缺口冲击强度和断裂伸长率提高,吸油率下降;含20%LLDPE及3%LDPE-g-AA的共混材料,其拉伸强度为14.43 MPa、断裂伸长率为389.11%、缺口冲击强度为29.51 kJ/m2、吸油率为14.40%,力学性能和阻隔性能优良。  相似文献   

16.
采用丙烯腈-丁二烯-苯乙烯共聚物(ABS)弹性体对聚乳酸(PLA)进行熔融共混改性,制备出具有一定韧性的PLA/ABS生物降解材料,并研究了该共混体系的热性能、力学性能和生物降解性能。结果表明:ABS弹性体的加入降低了PLA/ABS共混材料的玻璃化转变温度、冷结晶温度和熔点,提高了共混材料的高温分解温度和断裂伸长率,改善了PLA的热稳定性和韧性。土壤掩埋实验表明,纯PLA和ABS含量为10%的PLA/ABS共混薄片具有良好的生物降解性能。  相似文献   

17.
ABS/PMMA合金的配比与性能   总被引:2,自引:0,他引:2  
制备不同配比的ABS/PMMA合金,分别测试其缺口冲击强度、拉促强度、热变形温度、熔体指数,结果表明:1)ABS中引入PMMA强以提高耐热,2)ABS与PMMA共混能提高PMMA的力学性能特别是缺口冲击强度。3)当ABS/PMMA中PMMA为20%时,共混物具有最优的力学性能。4)一般情况下,ABS/PMMA合金的流动性介于ABS和PMMA的之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号