首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
纠缠双原子与压缩相干态光场相互作用系统的量子纠缠   总被引:1,自引:1,他引:0  
利用全量子理论,研究了双原子与压缩相干态光场相互作用系统的量子纠缠特性,分别讨论了相干态振幅参量、光场压缩参量和耦合系数比值对系统场熵和原子相对熵演化的影响.结果表明: 当相干态振幅参量为零或很小时,两原子间纠缠度随时间演化规律和场-原子纠缠度随时间演化规律几乎相反,场-原子间的纠缠削弱了两原子间的纠缠.随着相干态振幅参量增大或光场压缩参量减小,在一定时域内,两原子处于稳定的纠缠态,并且这个时域逐渐变长,同时原子-原子平均纠缠度值增大,而场-原子平均纠缠度值减小.耦合系数比值(原子之间偶极-偶极相互作用)的增大会减弱原子与场之间的作用,使两原子始终处于最大纠缠态.  相似文献   

2.
纠缠原子对Tavis-Cummings模型中三体纠缠态纠缠量的影响   总被引:4,自引:2,他引:2  
研究了一对纠缠的全同二能级原子在初始纠缠度不同时,与单模真空场相互作用的三体量子纠缠。结果表明:初始时刻两原子间纠缠度越大,体系的三体纠缠量震荡越激烈,达到最大纠缠量次数越多;并且随原子间耦合量大于原子与场的耦合量,三体纠缠量将会减小。  相似文献   

3.
Bell态原子与双模奇偶纠缠相干光场相互作用的纠缠特性   总被引:1,自引:1,他引:0  
运用全量子理论和数值计算的方法,借助于Negativity研究了Bell态原子与双模奇偶纠缠相干光场相互作用系统中两个全同二能级原子之间的纠缠演化特性.分析了光场强度、光场纠缠度及原子间相互作用强度对纠缠的影响.结果表明:原子初态处于|β11〉时,两原子始终处于最大纠缠态;原子初态处于|β00〉时,两原子始终较长时间处于退纠缠状态;原子处在|β10〉时,增大双模光场的平均光子数可以明显增大两原子之间的纠缠度并保持较大的纠缠状态;原子初态处在|β01〉时,原子间的相互作用强度对双原子间纠缠度有较显著的非线性调制作用.  相似文献   

4.
研究了Tavis-Cunmings模型时间演化特性和其中的光场非经典性质.精确求解了体系中光场的二阶相干函数,着重讨论了二阶相干函数和原子间耦合强度的关系.对体系可能产生的量子纠缠进行了详细的研究,在合适的初始条件下体系可以产生3bit完全纠缠态,利用Coffman对3体纠缠的定义讨论了体系3bit纠缠的纠缠度.在特定的初始条件下,体系产生W-纠缠态,给出了产生W-纠缠态的必要条件,研究了纠缠量随三体所处的初始状态、原子间及原子与场之间的耦合系数变化而变化关系.  相似文献   

5.
类W态原子与耦合腔相互作用系统中的纠缠动力学   总被引:1,自引:1,他引:0  
卢道明 《光电子.激光》2014,(12):2430-2436
采用Negativity熵度量两体纠缠,通过数值计算研 究了类W态原子与耦合腔相互作用系统中 两原子间的纠缠。讨论了描述原子初态的参量变化和腔场间耦合系数对两体纠缠的影响。考 虑对腔外原子 进行选择性测量,通过比较测量前后腔内原子间的纠缠,研究了原子态选择性测量对纠缠的 影响。研究结 果表明:随囚禁在耦合腔中的两原子间初始纠缠度增大,腔中的两原子间纠缠增强;随腔场 间耦合强度的 增强,原子间纠缠也增强。另一方面,对腔外原子进行选择性测量,可提高腔内原子间的纠 缠。  相似文献   

6.
研究了初始处于Schroedinger猫态光场与纠缠态原子相互作用体系的压缩特性。通过数值计算,讨论了光场强度和相干态相位角对体系中的双原子偶极压缩和光场压缩的影响。结果表明:在弱场情况下,不存在偶相干态和Yurke-Stoler相干态与纠缠态原子相互作用的光场振幅压缩,但存在奇相干态与纠缠态原子相互作用的光场振幅压缩。在相同的条件下,不存在偶相干态与纠缠态原子相互作用的原子偶极压缩,存在奇相干态和Yurke-Stoler相干态与纠缠态原子相互作用的原子偶极压缩。在强场情况下,三种不同的光场分别与纠缠态原子相互作用,两种压缩现象均不存在。  相似文献   

7.
研究了初始处于Schrodinger猫态光场与纠缠态原子相互作用体系的压缩特性。通过数值计算,讨论了光场强度和相干态相位角对体系中的双原子偶极压缩和光场压缩的影响。结果表明:在弱场情况下,不存在偶相干态和Yurke-Stoler相干态与纠缠态原子相互作用的光场振幅压缩,但存在奇相干态与纠缠态原子相互作用的光场振幅压缩。在相同的条件下,不存在偶相干态与纠缠态原子相互作用的原子偶极压缩,存在奇相干态和Yurke-Stoler相干态与纠缠态原子相互作用的原子偶极压缩。在强场情况下,三种不同的光场分别与纠缠态原子相互作用,两种压缩现象均不存在。  相似文献   

8.
利用全量子理论研究了两个全同的纠缠二能级原子与相干态光场相互作用的量子信息保真度。结果表明:系统、原子和场的保真度随平均光子数的增加而急剧减小;系统和原子的保真度随原子间偶极—偶极相互作用增加而变大且趋于同步,但原子的保真度增大更为明显:原子初始纠缠度对三体系保真度影响并不大。  相似文献   

9.
提出了由相干耦合原子与单模相干腔场相互作用的物理模型.利用全量子理论,研究了该系统的演化过程,结果表明:在一定时间条件下量子原子纠缠态与光场纠缠态可以相互转换;还发现,适当控制原子与腔场相互作用的时间,原子纠缠态或光场纠缠态可以保持初态不变.  相似文献   

10.
纠缠原子与光场作用体系的压缩特性   总被引:10,自引:6,他引:4  
研究了Kerr介质中初始处于纠缠态的两二能级原子与相干光场相互作用体系的压缩特性.通过数值计算,讨论了原子偶极间相互作用耦合常数和Kerr介质与单模腔场相互作用的耦合强度对体系中的双原子偶极压缩和光场压缩的影响.结果发现在弱光场情况下,纠缠态原子偶极间相互作用和Kerr介质与光场作用越强,都使原子偶极振幅压缩现象从压缩状态退缩到无压缩状态;在强光场情况下,纠缠态原子偶极间相互作用越强,光场振幅压缩次数增多、振荡频率变慢;Kerr介质与光场作用越强,光场振幅压缩次数减少、振荡频率变快.  相似文献   

11.
研究了两对非相互作用、空间分离的原子在双模腔场作用下的三体和两体纠缠动力学行为。对非简并双光子Tavis-Cummings模型进行了研究,通过数值计算分析了纠缠初始状态、原子与腔场以及光纤模与腔场的耦合强度对纠缠的影响。结果表明:纠缠初始状态对原子间的纠缠有显著影响;较大的场和光纤模的耦合强度可以实现原子与原子间最大纠缠的转移;较大的原子与腔场耦合强度有助于两原子与腔场构成三体纠缠。  相似文献   

12.
考虑两个全同的处在非最大纠缠态的双能级原子,将其中一个与共振的真空腔场相互作用.当对腔外的原子进行旋转和测量操作时,腔场的压缩性质就会发生改变,不同的旋转角度将会引起不同的压缩效应,而且原子的纠缠度也将影响腔场的压缩性质.但对于任意的纠缠度,都可以对腔外原子选择适当的旋转角度,使得腔场获得最强的压缩效应.这一结论还被推广到了双模压缩的情形.  相似文献   

13.
考虑三个二能级原子(A、B和C)初始处于W纠缠态或GHZ纠缠态,让其中两原子A和B与相干态光场发生共振作用,经腔QED演化以后,对腔内原子进行Bell基测量,通过调节相干态光场的强度和原子间的偶极-偶极相互作用强度,控制腔外C原子的布居差演化。结果表明:选择不同的初态以及在同一初态下进行不同的测量,光场的强度和原子间偶极作用强度对腔外原子布居差的演化特性有着不同的影响,增大光场的强度和原子间的偶极相互作用强度,都能使腔外原子布居差的演化呈现出明显的崩塌-回复现象和Rabi频率增大及回复周期变长等特征。  相似文献   

14.
研究了当耦合系数为高斯型分布时运动原子与压缩真空场的纠缠特性,讨论了原子垂直于腔轴的运动、原子初态、压缩参数r对纠缠度的影响。结果发现:原子速度的增大会使原子与光场的有效作用时间变短,纠缠度也将很快达到最大值。压缩参数r对纠缠度的演化曲线有明显的调制作用,当压缩参数取适当值(如r=2)时,系统可长久停留在最大纠缠态,无消纠缠态或持续地处于消纠缠态。  相似文献   

15.
采用全量子理论方法,研究了存在相位退相干的2个纠缠的两能级原子与真空场进行相互作用系统中两原子的纠缠演化.结果表明:相位退相干系数、初始两原子的状态和原子间的偶极相互作用对腔中2个原子的纠缠有着显著的影响.研究发现:考虑存在相位退相干时,两原子纠缠是一逐渐衰减的波动过程,最后趋于稳定的值,这个稳定值与开始两原子的状态和偶级相互作用有关;即使存在相位退相干,如果适当选择原子的初态,两原子会永远处于最大纠缠态.  相似文献   

16.
两纠缠二能级原子在真空场中的纠缠动力学   总被引:3,自引:0,他引:3  
研究了两个部分纠缠二能级原子与单模真空场相互作用的纠缠动力学.利用量子约化熵研究了两部分纠缠二能级原子与单模真空场之间的纠缠动力学;利用量子相对熵研究了两部分纠缠二能级原子之间的纠缠动力学;讨论了原子偶极-偶极相互作用对系统纠缠动力学的影响.结果表明:系统呈现出周期性的纠缠动力学,纠缠的大小与周期依赖于原子之间的偶极-偶极相互作用.选取适当的系统参数和相互作用时间,可以制备原子-场最大纠缠态与原子-原子最大纠缠态.  相似文献   

17.
利用全量子理论并结合数值计算的方法,研究两个二能级原子与双模纠缠相干场相互作用系统的原子布居数演化性质.讨论了跃迁光子数、初始平均光子数、光场纠缠程度及双原子问偶极相互作用对原子布居数演化特性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号