首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于CRF和规则相结合的地理命名实体识别方法   总被引:1,自引:0,他引:1  
为了识别文本中海量的地理命名信息,以CRF(条件随机场)模型识别为基础,加入制定的规则,来提高CRF模型识别的召回率,从而提高整体的地理命名实体识别效果。通过选取适合的地理命名实体识别的特征模板,验证特征的有效性以及分析CRF模型识别结果中的未识别实体样本,设计针对未识别实体的规则用以修正识别结果。实验表明,对地名和组织名结合规则进行修正后的F值达到了91.61%和85.74%,有了显著提高。  相似文献   

2.
针对电子病历结构化中命名实体识别困难的问题,提出了一种基于CRF与规则相结合的医学病历实体识别算法.该算法采用CRF进行病历实体的初始识别,然后基于规则进行病历实体识别结果优化,其中规则包括基于决策树生成的规则和临床知识规则.实验证明,该算法对病历实体进行识别时准确率及召回率分别最高达到91.03%和87.26%,满足临床中系统应用需求,同时实验表明该算法具有很好的鲁棒性和稳定性.  相似文献   

3.
许多的生物医学命名实体识别(Bio-NER)工作都集中于提取扁平化的实体,而忽略了嵌套实体和不连续实体.此外,大多数生物医学命名实体都未遵循统一的命名法,具有许多典型的领域特征,但其使用效率较低.为此提出一种结合CRF的边界组合命名实体识别方法,有效地利用了生物医学实体特征.该方法包括边界检测、边界组合和实体筛选三个步骤.首先使用神经网络模型和基于特征的CRF模型识别实体开始和结束边界,然后经过边界组合产生候选实体,最后使用多输入的卷积神经网络模型对候选实体进行筛选并分类.实验表明,该方法能够有效地识别生物医学文献中的嵌套和不连续实体,在GENIA数据集上达到81.89%的F值.  相似文献   

4.
5.
目前,维吾尔文命名实体识别研究主要集中在单类实体,且没有引入半监督学习方法,从而无法利用未标注语料的无监督语义和结构信息。该文以条件随机场为基本框架,提出了一种基于半监督学习的维吾尔文命名实体识别方法。通过引入词法特征、词典特征、以及基于词向量的无监督学习特征,对比不同特征对识别的影响,并对模型进行优化。实验表明,CRF模型融合多种特征时维吾尔文命名实体识别的F值达到87.43%,说明词法特征和无监督学习特征的有机结合,可以大大减少人工选取特征的工作量,同时也可提高维吾尔文命名实体识别的性能;CRF模型相比于神经网络模型,更适合用于实际应用中。  相似文献   

6.
基于多层条件随机场的中文命名实体识别   总被引:2,自引:0,他引:2       下载免费PDF全文
命名实体识别属于自然语言处理的基础研究领域,是信息抽取、信息检索、机器翻译、组块分析、问答系统等多种自然语言处理技术的重要基础。主要研究中文命名实体中对复杂地名和复杂机构名的识别,提出一种基于多层条件随机场的命名实体识别的方法。对大规模真实语料进行开放测试,两项识别的召回率、准确率和F值分别达到91.95%、89.99%、90.50%和90.07%、88.72%、89.39%。  相似文献   

7.
《微型机与应用》2017,(21):51-53
生物医学文献中的疾病命名实体识别问题是疾病相关的生物信息学分析基础,疾病命名实体中的医学术语识别和边界确定是该问题的难点和关键。文中提出了一种CRF(Conditional Random Field)与词典相结合的疾病命名实体识别方法。该方法利用网络资源来构建含有语义信息的医学术语词典,并使用该词典对医学术语进行识别,获得医学术语的语义信息,然后CRF结合这些信息对疾病命名实体进行识别。实验结果表明该方法有效。  相似文献   

8.
目前针对中医古籍实体识别研究较少,且大多使用有监督学习方法。但古籍数字化程度低、标注语料稀少,且其语言多为文言文,专业术语也不断发展,现有方法无法有效解决以上问题。故而,该文在构建了中医古籍语料库的基础上,通过对中医古籍中实体名的分析研究,提出了一种基于半监督学习和规则相结合的中医古籍实体识别方法。以条件随机场模型为基本框架,在引入词、词性、词典等有监督特征的同时也引入了通过词向量获得的无监督语义特征,对比不同特征组合的识别性能,确定最优的半监督学习模型,并与其他模型进行了对比。之后,结合古籍语言学特点构建规则库对其进行基于规则的后处理。实验结果中最终F值达到83.18%,证明了该方法的有效性。  相似文献   

9.
该文通过维吾尔文地名的分析研究,提出了一种基于条件随机场和规则的维吾尔文地名识别方法。根据维吾尔文地名黏着性、音译等特点,针对维吾尔文地名识别任务,在词汇和词性特征基础之上,引入音节、词向量获取的相似单词、常用地名词典、地名特征词、地名词缀等特征进行实验,结果表明这些特征对识别性能有较大的影响。通过对错误识别结果分析,该文提出了基于规则的后处理,进一步提高了识别性能,准确率达到94.68%,召回率达到89.52%,F值达到92.03%。  相似文献   

10.
采用地理编码和汉语切分词相结合的方法对空间命名实体进行在线识别。通过全文粗扫描获取相关的地理编码来锁定文中涉及的空间范围,然后按照一定的策略在确定的空间范围内进行单句识别,从而显著地减少了词典的加载量,较好地解决了因命名实体词典数量庞大而导致的低效率问题。实验表明,该方法能有效降低内存的消耗量和识别时间,提高识别精度,基本满足空间命名实体在线识别和位置信息服务的要求。  相似文献   

11.
杨飘  董文永 《计算机工程》2020,46(4):40-45,52
在基于神经网络的中文命名实体识别过程中,字的向量化表示是重要步骤,而传统的词向量表示方法只是将字映射为单一向量,无法表征字的多义性.针对该问题,通过嵌入BERT预训练语言模型,构建BERT-BiGRU-CRF模型用于表征语句特征.利用具有双向Transformer结构的BERT预训练语言模型增强字的语义表示,根据其上下文动态生成语义向量.在此基础上,将字向量序列输入BiGRU-CRF模型中进行训练,包括训练整个模型和固定BERT只训练BiGRU-CRF2种方式.在MSRA语料上的实验结果表明,该模型2种训练方式的F1值分别达到95.43%和94.18%,优于BiGRU-CRF、Radical-BiLSTM-CRF和Lattice-LSTM-CRF模型.  相似文献   

12.
命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式难以获取词语信息。提出一种基于Transformer编码器的中文命名实体识别模型,在字嵌入过程中使用结合词典的字向量编码方法使字向量包含词语信息,同时针对Transformer编码器在注意力运算时丢失字符相对位置信息的问题,改进Transformer编码器的注意力运算并引入相对位置编码方法,最终通过条件随机场模型获取最优标签序列。实验结果表明,该模型在Resume和Weibo中文命名实体识别数据集上的F1值分别达到94.7%和58.2%,相比于基于双向长短期记忆网络和ID-CNN的命名实体识别模型均有所提升,具有更优的识别效果和更快的收敛速度。  相似文献   

13.
旅游领域命名实体识别是旅游知识图谱构建过程中的关键步骤,与通用领域的实体相比,旅游文本的实体具有长度长、一词多义、嵌套严重的特点,导致命名实体识别准确率低。提出一种融合词典信息的有向图神经网络(L-CGNN)模型,用于旅游领域中的命名实体识别。将预训练词向量通过卷积神经网络提取丰富的字特征,利用词典构造句子的有向图,以生成邻接矩阵并融合字词信息,通过将包含局部特征的词向量和邻接矩阵输入图神经网络(GNN)中,提取全局语义信息,并引入条件随机场(CRF)得到最优的标签序列。实验结果表明,相比Lattice LSTM、ID-CNN+CRF、CRF等模型,L-CGNN模型在旅游和简历数据集上具有较高的识别准确率,其F1值分别达到86.86%和95.02%。  相似文献   

14.
基于ALBERT-BGRU-CRF的中文命名实体识别方法   总被引:1,自引:0,他引:1  
命名实体识别是知识图谱构建、搜索引擎、推荐系统等上层自然语言处理任务的重要基础,中文命名实体识别是对一段文本序列中的专有名词或特定命名实体进行标注分类。针对现有中文命名实体识别方法无法有效提取长距离语义信息及解决一词多义的问题,提出一种基于ALBERT-双向门控循环单元(BGRU)-条件随机场(CRF)模型的中文命名实体识别方法。使用ALBERT预训练语言模型对输入文本进行词嵌入获取动态词向量,有效解决了一词多义的问题。采用BGRU提取上下文语义特征进一步理解语义,获取长距离词之间的语义特征。将拼接后的向量输入至CRF层并利用维特比算法解码,降低错误标签输出概率。最终得到实体标注信息,实现中文命名实体识别。实验结果表明,ALBERT-BGRU-CRF模型在MSRA语料库上的中文命名实体识别准确率和召回率分别达到95.16%和94.58%,同时相比于片段神经网络模型和CNN-BiLSTM-CRF模型的F1值提升了4.43和3.78个百分点。  相似文献   

15.
周详  李少波  杨观赐 《计算机应用》2015,35(7):1945-1949
针对服装类商品标题中的商品属性实体识别问题,提出了一种边界探测规则与条件随机场(CRF)相结合的混合方法。首先,使用统计方法挖掘隐蔽的实体提示字信息;然后,以字为粒度对三种统计成词指标及其内涵进行了阐释;接着,基于统计成词指标和提示字信息设计了实体边界探测规则;最后,基于经验风险最小化给出了规则中阈值的确定方法。在与字标注的CRF模型的对比实验中,总体准确率、召回率、F1值分别提升了1.61%、2.54%和2.08%,验证了对于实体边界探测规则的有效性。所提方法可用于电子商务信息检索(IR)、电子商务信息抽取(IE)、查询意图识别等任务。  相似文献   

16.
生物医学命名实体识别是从生物医学文献中获取关键知识的基础与关键任务.文中提出基于深层条件随机场的生物医学命名实体识别方法,构建多层结构的深层条件随机场模型,在不同层次的特征上结合增量式学习策略,选择最优特征集.最后通过基于〈全名,缩写〉对和基于领域信息的错误纠正算法,进一步修正识别结果.在生物医学命名实体评测语料JNLPBA上的实验验证文中方法的有效性.  相似文献   

17.
As a crucial subtask in Natural Language Processing (NLP), Named Entity Recognition (NER) aims to extract import information from text, which can help many downstream tasks such as machine translation, text generation, knowledge graph construction, and multimodal data fusion to deeply understand the complex semantic information of the text and effectively complete these tasks. In practice, due to time and labor costs, NER suffers from annotated data scarcity, known as few-shot NER. Although few-shot NER methods based on text have achieved good generalization performance, the semantic information that the model can extract is still limited due to the few samples, which leads to the poor prediction effect of the model. To this end, in this paper we propose a few-shot NER model based on multimodal data fusion, which provides additional semantic information with multimodal data for the first time, to help the model prediction and can further effectively improve the effect of multimodal data fusion and modeling. This method converts image information into text information as auxiliary modality information, which effectively solves the problem of poor modality alignment caused by the inconsistent granularity of semantic information contained in text and images. In order to effectively consider the label dependencies in few-shot NER, we use the CRF framework and introduce the state-of-the-art meta-learning methods as the emission module and the transition module. To alleviate the negative impact of noise samples in the auxiliary modal samples, we propose a general denoising network based on the idea of meta-learning. The denoising network can measure the variability of the samples and evaluate the beneficial extent of each sample to the model. Finally, we conduct extensive experiments on real unimodal and multimodal datasets. The experimental results show the outstanding generalization performance of the proposed method, where our method outperforms the state-of-the-art methods by 10 F1 scores in the 1-shot scenario.  相似文献   

18.
基于BERT-BiLSTM-CRF模型的中文实体识别   总被引:1,自引:0,他引:1  
命名实体识别是自然语言处理的一项关键技术.基于深度学习的方法已被广泛应用到中文实体识别研究中.大多数深度学习模型的预处理主要注重词和字符的特征抽取,却忽略词上下文的语义信息,使其无法表征一词多义,因而实体识别性能有待进一步提高.为解决该问题,本文提出了一种基于BERT-BiLSTM-CRF模型的研究方法.首先通过BERT模型预处理生成基于上下文信息的词向量,其次将训练出来的词向量输入BiLSTM-CRF模型做进一步训练处理.实验结果表明,该模型在MSRA语料和人民日报语料库上都达到相当不错的结果, F1值分别为94.65%和95.67%.  相似文献   

19.
命名实体识别是自然语言处理的基本任务之一。针对中文电子病历命名实体识别传统模型识别效果不佳的问题,提出一种完全基于注意力机制的神经网络模型。实验采用自建真实中文电子病历数据集并对数据集进行人工标注、分词等预处理;对Transformer模型进行训练优化,以提取文本特征;利用条件随机场对提取到的文本特征进行分类识别。为验证所提方法的有效性,将构建的Transformer-CRF神经网络模型与其他7种传统模型进行比较研究,实验采用精确率、召回率和[F1]值三个指标评估模型的识别性能。实验结果显示,在同一语料集下,Transformer-CRF模型对身体部位类的命名实体识别效果较好,[F1]值高达95.02%;且与其他7种传统模型相比,Transformer-CRF模型的精确率、召回率和[F1]值均较高,在一定程度上验证了所构建模型具有较好的识别性能。  相似文献   

20.
实体嵌套是自然语言中一种常见现象,提高嵌套命名实体识别的准确性对自然语言处理各项任务具有重要作用。针对现有嵌套命名实体识别方法在识别实体边界时不够准确、未能有效利用实体边界信息等问题,提出一种嵌套命名实体识别的边界强化分类模型。采用卷积神经网络提取邻接词的特征,通过加入多头注意力的序列标注模型获取实体中的边界特征,提高实体边界检测的准确性。在此基础上,计算实体中各词语对实体类型的贡献度,将实体关键字与实体边界词相结合来表示实体,使实体表示中包含实体关键信息和边界信息,最后进行实体类型检测。实验结果表明,通过加入多头注意力机制能够有效提升对嵌套命名实体的检测和识别性能,该模型在GENIA和GermEval 2014数据集上准确率有较好表现,并且召回率和F1值较对比模型达到最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号