共查询到19条相似文献,搜索用时 140 毫秒
1.
为了对大规模训练样本进行缩减,提出了k近邻向量,给出了一种新的样本差异度的计量方法,证明了该差异度关于噪声识别和类边界距离的几个性质。依据此性质提出了一个高效的SVM训练样本缩减算法,算法首先根据样本差异度的性质剔除噪声样本,然后用类间差异度近似表示类边界距离,结合样本相似性,直接从原始样本空间剔除次要的训练样本。仿真结果表明,减样算法可以有效缩减样本,提高训练效率。 相似文献
2.
SVM中基于距离的减样方法 总被引:1,自引:0,他引:1
给出一种基于距离的减样方法,称为三步减样法(Three-step desampling method,TSDM).根据概率论的知识定位定量分析了噪点及多余样本点的一般比例情况.在应用时根据样本间的距离分三步进行减样:即根据样本点的分布情况选择三个阈值,分别进行精减(除噪)、内减和外减以便提取具有代表性的边界向量.三个阈值可采取正交实验设计或二分法确定.试验结果表明该方法与标准SVM相比一般能保持或提高分类精度;对于大样本来说不仅能保持精度不减,而且还能较大地提高分类速度,具有较强的实用性. 相似文献
3.
针对传统支持向量机(SVM)对噪声点过于敏感,模糊支持向量机(FSVM)又对样本集几何形状过分依赖等问题,提出基于噪声过滤系统的粗糙支持向量机(NFS-RSVM)。该方法首先用噪声过滤系统(NFS)将极可能为噪声点的样本过滤掉;然后将数据间隐含的等价类信息作为双惩戒因子融入到支持向量机模型中,进一步区分有效样本和噪声样本。基于UCI数据集的仿真结果表明,NFS-RSVM方法能有效地将数据中的大部分噪声点去除,与传统的SVM和FSVM相比分类精度有一定程度的提高。因此,该方法在处理噪声样本较多又呈现非球形分布的数据集时,表现出较好的抗噪性、分类效果和泛化能力。 相似文献
4.
用核空间距离聚类约简大规模SVM训练集 总被引:1,自引:0,他引:1
针对支持向量机在大规模数据集上训练效率慢问题,本文提出了一种基于核空间距离聚类的支持向量机减样方法;首先引入核空间的距离公式,实现核空间的高维数据聚类,通过聚类约减训练集中大量非支持向量,达到减样目的,减少训练时间。实验结果表明新训练数据集算法具有更快的训练速度以及更高的分类精度。 相似文献
5.
针对大规模训练集的支持向量机的学习策略 总被引:29,自引:0,他引:29
当训练集的规模很大特别是支持向量很多时.支持向量机的学习过程需要占用大量的内存,寻优速度非常缓慢,这给实际应用带来了很大的麻烦.该文提出了一种针对大规模样本集的学习策略:首先用一个小规模的样本集训练得到一个初始的分类器,然后用这个分类器对大规模训练集进行修剪,修剪后得到一个规模很小的约减集,再用这个约减集进行训练得到最终的分类器.实验表明,采用这种学习策略不仅大幅降低了学习的代价,而且这样获得的分类器的分类精度完全可以与直接通过大规模样本集训练得到的分类器的分类精度相媲美,甚至更优,同时分类速度也得到大幅提高. 相似文献
6.
针对支持向量机在训练大规模数据集时出现的速度瓶颈问题,提出一种新的减样方法,称双层减样法。数据减样时,双层减样法从粗、细粒度两个层次削减样本。粗粒度约减时,利用核空间距离聚类法,以簇为单位削减冗余子集。细粒度约减时,以点为单位挑选剩余点集中的支持向量。实验表明,双层减样法能有效的压缩样本数据,同时还能放大数据集的分类特征,提高分类器的分类精度。将此法应用于大规模SVM垃圾标签检测模型的训练集优化上,能明显提高检测模型的训练速度。双层减样法是将“粒度”和“层次”的概念引入减样法中,在约减时适时改变约减幅度。这比传统减样法更具有优势。 相似文献
7.
基于样本投影分布的平衡不平衡数据集分类* 总被引:2,自引:0,他引:2
提出一种平衡不平衡数据集统一分类方法,首先得到训练样本基于支持向量机(SVM)超平面法线方向上的投影;再借助支持向量数据描述(SVDD)对训练样本投影分布进行描述;测试样本在此基础上实现分类。平衡或不平衡数据集都可采用相同的方法进行分类。实验表明该方法能够同时对平衡或不平衡数据集进行有效的分类。 相似文献
8.
基于半监督学习思想,采用支持向量机算法来构建分类器,用大量未标识样本来改善分类器性能。标记后的未标识样本可能存在标记错误,采用信息熵加权的欧氏距离去噪方法,减少噪声样本对最优分类面构建的影响,并且对测试错误的数据进行人工反馈提高分类器精度。实验证明了该方法的有效性,去噪提高了分类器的准确率。 相似文献
9.
为了提高支持向量机在大规模数据集处理时的精度,提出了基于核空间和样本中心角度的支持向量机算法.在核特征空间下,求得原训练集的两类中心点和两个中心点的超法平面,并获取原训练集样本到超法平面距离和到两中心点中点的比值,用比值最小的n个样本点替代训练集.给出的数学模型显示,该算法不需要计算核空间,比现有的同类缩减策略保留了更多的支持向量数目.结合实例对算法进行了仿真实验,实验结果表明,与同类算法相比,该算法在基本没有降低训练速度的情况下获得了更准确的训练精度. 相似文献
10.
针对最小二乘支持向量机核函数结构较浅对其长期预测模型精度的限制,采用深度学习中逐层特征提取的思想,提出基于深度去噪核映射的最小二乘支持向量机长期预测模型.该模型通过深度核网络的逐层变换,将样本数据映射到深度特征空间,从而有效提高其长期预测的精度.此外,为了提高模型对含高噪声数据的拟合性能,将去噪算法融入深度核网络的训练过程中,并通过反向传播算法对核网络参数进行整体微调.标准数据集及实际工业数据的仿真实验结果表明,所提方法能够有效提取数据中蕴含的特征信息,提高预测模型的精度. 相似文献
11.
在许多人脸确认应用领域,例如人脸计算机安全登录系统中,没有用于SVM训练的人脸数据库可以提供,在现有基于SVM的人脸确认算法的基础上,根据实际应用的需求,提出了一种新的基于独立负样本集和SVM的人脸确认算法,该方法对注册的用户图像通过眼睛抖动的方法生成足够多的正样本,利用FLD技术进行特征提取,并利用基于Rank的一对多的识别方法去除同类项,解决了训练样本与负样本类别冲突问题.正负样本送SVM进行训练可以得到相应的SVM模型,对于待确认的人脸图像就可以采用SVM进行验证了.对SCUT人脸数据库的测试表明:足够数量的负样本能够保证较低的FAR,且支持向量的数量不会随着负样本集的数量增长而增长.应用这个算法,实现了一个计算机安全登录系统. 相似文献
12.
蒋桂莲 《计算机与数字工程》2010,38(6):138-141
人脸识别方法易受光照、姿态和表情变化的影响,针对这一问题,提出了一种基于Gabor小波和粗糙集属性约简的人脸识别方法。该方法先对人脸图像进行Gabor小波变换,将小波变换的系数作为人脸图像的特征向量;然后结合信息论中信息熵与互信息的概念定义了粗糙集里的一种新的属性重要度,并以此属性重要度为启发式信息进行约简数据集,从而对所得的人脸图像特征进行降维,并采用支持向量机进行分类。实验结果表明,该算法降低了支持向量机分类器的复杂度,有较好的识别性能。 相似文献
13.
属性约简能有效地去除不必要属性,提高分类器的性能。模糊粗糙集是处理不确定信息的重要范式,能有效地应用于属性约简。在模糊粗糙集中,样本分布的不确定性会影响对象的近似集,进而影响有效属性约简的获取。为有效地定义近似集,文中提出了基于距离比值尺度的模糊粗糙集,该模型引入了基于距离比值尺度的样本集的定义,通过对距离比值尺度的控制,避免了样本分布不确定性对近似集的影响;给出了该模型的基本性质,定义了新的依赖度函数,进而设计了属性约简算法;以SVM,NaiveBayes和J48作为测试分类器,在UCI数据集上评测所提算法的性能。实验结果表明,所提出的属性约简算法能够有效获取约简并提高分类的精度。 相似文献
14.
15.
16.
属性约减是粗糙集理论的重要研究内容之一。由于Z.Pawlak经典粗糙集模型在处理集合间隶属关系过于简单的缺陷,文章提出了以集合间距离作为集合隶属关系的判别依据,对属性依赖度和重要度重新进行了定义,从而对属性约减算法进行改进。最后,通过一个数据模型的验证,改进后的算法能够更有效地滤除冗余属性,保留关键属性。 相似文献
17.
针对含噪织物纹理在去噪过程中存在的形状失真和拓扑演变适应性差的问题,提出一种新的提花织物纹理图像去噪算法,并讨论了Allen-Cahn方程的水平集公式.该算法结合Allen-Cahn方程和水平集去噪技术,首先利用Allen-Cahn方程生成面积保留的平均曲率运动;然后利用水平集公式演化纹理图像中的曲线,该公式可以提供简单且稳健的边缘估计和阈值策略.实验结果表明了该算法的可行性,其在图像的保边去噪处理中取得很好的效果. 相似文献
18.