共查询到18条相似文献,搜索用时 78 毫秒
1.
针对单样本情况下传统人脸识别方法识别效果不佳的问题,提出一种融合单演幅值、相位和方向的单演中心对称幅值相位方向模式(MCSLBP)的人脸识别方法。首先采用中心对称局部二值模式(CS-LBP)对同一尺度下的单演幅值进行编码,并将单演相位量化到4个区间进行编码,同时对单演水平方向和垂直方向进行二值编码,然后将三者融合成MCSLBP特征;最后对不同单演尺度空间中的MCSLBP模式图进行分块,提取每一小块的直方图特征并串联后用最近邻分类器进行分类识别。在CAS-PEAL和AR人脸库上的实验结果表明,MCSLBP方法对具有光照、表情和遮挡变化的单样本人脸识别具有较好的识别效果。 相似文献
2.
基于多通道Gabor滤波与CS-LBP的人脸识别方法 总被引:2,自引:0,他引:2
近来,局部二值模式(Local Binary Pattern,LBP)在人脸识别中取得了成功应用。然而,LBP提取的特征维数通常很高。而中心对称局部二值模式(Center-Symmetric Local Binary Pattern,CS-LBP)采用中心对称思想对图像进行编码,能够显著降低提取的特征的维数。为此,将CS-LBP应用于人脸图像特征提取,并结合多通道Gabor滤波,提出了基于多通道Gabor滤波与CS-LBP的人脸识别算法。在Yale,ORL,FETER标准人脸库上的实验结果表明,相比局部二值模式,CS-LBP以提取更少的特征维数取得了相当的识别率,并且,基于多通道Gabor滤波的CS-LBP能显著提高识别精度。 相似文献
3.
针对传统的人脸识别算法在单训练样本的情况下识别率不佳的情况,提出一种结合拉普拉斯滤波与中心对称局部二值模式的人脸识别算法(LFCLBP)。对原始人脸图像进行拉普拉斯滤波处理;然后对图像提取梯度幅值和梯度相位信息,对梯度幅值用CS-LBP算子编码,再将梯度相位量化到16个区间进行编码,将二者融合成人脸图像的LFCLBP特征;分块统计直方图特征,将所有分块的直方图串联起来作为人脸图像的特征向量,并用最近邻分类器识别。在YALE人脸库和AR人脸库上进行测试,测试结果表明该算法有效,在光照变化、表情变化和部分遮挡等环境下对单样本人脸图像具有较好的识别效果。 相似文献
4.
由于全局特征与局部特征在人脸识别中的不同作用及结合的必要性,提出基于2DLDA全局特征与LBP局部特征加权融合算法,并在ORL库及光照子集、表情子集、姿态子集四个实验库上讨论融合算法对复杂光照、表情、姿态的鲁棒性.实验结果验证两种特征的互补性和融合算法的有效性. 相似文献
5.
比较研究了多模态人脸识别中的5种匹配得分级融合方法。首先用局部二值模式(Local Binary Pattern,LBP)算子分别提取人脸灰度图像和深度图像的区域LBP直方图序列(LBP Histogram Sequence,LBPHS),采用Fisherfaces分别构建相应的线性子空间,用余弦相似度计算投影向量的匹配得分,再采用5种方法对匹配得分进行融合。在FRGC数据库上的实验结果表明,除最小匹配得分外,其他融合方法的识别性能都要优于单一模态的方法。 相似文献
6.
7.
相比普通镜头,鱼眼镜头拥有更大的视场角,甚至可以直接获取半球域的图像信息,在立体视觉领域,应用鱼眼镜头来采集全景图像可减少镜头及图像采集模块数目,简化系统、提高运算速度、降低成本。但同时鱼眼镜头图像也存在一定程度的畸变,越靠近边缘畸变越严重。因此,在光轴正交或是角度更大的立体视觉系统中,进行相关图像的特征点匹配存在困难,直接影响立体视觉系统的应用效果。然而采用一种具有仿射不变性的图像匹配算法即可解决这个问题,首先提取原始图像的MSCR特征区域,其次引进CS-LBP算子对各个MSCR区域进行特征描述,应用特征权重的卡方距离比较法进行唯一匹配,最后进行椭圆拟合及连线标记使得匹配结果可视化。且通过实验验证了此方法的稳定一致性,可应用于大旋转角度的鱼眼图像的特征匹配。 相似文献
8.
刘冬梅 《计算机光盘软件与应用》2013,(12):187-188
针对单一的人脸特征在人脸识别中的局限性,本文将多种人脸特征进行融合以提高识别率。通过对人脸图像提取PCA、DCT和LBP特征向量,后通过数据融合理论进行多特征融合,最后经过Fisher分类器进行识别,实验表明本文算法有效提高了人脸识别性能。 相似文献
9.
提出一种融合局部二值模式(LBP)和局部非负矩阵分解(LNMF)进行人脸识别的方法,采用LBP算子提取分块人脸图像的LBP直方图序列(LBPHS),根据每块的贡献度,得到权重的直方图序列(WeightLBPHS),采用LNMF方法提取其非负子空间及其系数矩阵,根据最近邻原则进行识别。在ORL和YALE标准人脸数据库上的实验表明,该方法具有较高的识别率。 相似文献
10.
LBP和HOG的分层特征融合的人脸识别 总被引:1,自引:0,他引:1
针对LBP描述子提取的纹理特征有限且不能有效地描述图像边缘和方向信息的问题,提出了LBP和HOG的分层特征融合的方法.首先利用LBP算子提取图像的分层纹理谱特征,然后利用HOG算子提取原始图像的边缘特征和基于分层LBP特征的分层HOG特征,最后将分层LBP特征分别与2种HOG边缘特征融合,得到2种不同的多层融合特征.通过在ORL,Yale和GT人脸库上进行实验,比较了15种算法的识别性能,结果证明了文中方法的有效性;相对于传统的经典降维算法、单一的LBP特征提取算法和HOG特征提取算法,该方法的识别率有很大的提高,分别达到99%,99.5%和99.14%. 相似文献
11.
12.
针对现有预处理算法存在的缺陷及单一人脸特征在识别中的局限性,本文在基于双眼独立动态阈值的人脸预处理方法的基础上,研究全局特征PCA、2DPCA与局部特征LBP、Gabor,分析对比这几种特征的识别效果及适用情况;根据对这几种特征的研究分析,采用特征融合的方式对PCA和LBP特征进行融合;实验结果验证了在ORL库和ESSEX库上采用决策级融合的识别率优于特征级融合及单一特征的识别率。
相似文献
13.
基于多尺度局部二值模式的人脸识别 总被引:1,自引:0,他引:1
提出了一种基于多尺度局部二值模式的人脸识别方法.局部二值模式已经被证明是人脸表示的一种有效算子,不过由于其太小以至于鲁棒性不高.在多尺度局部二值模式中,计算是基于块子区域的平均值,而不是基于单个像素值进行的.人脸图像首先被分成小的子区域,具有不同权值的BLBP算子抽取每一子区域的直方图,然后把它们连接起来,组成一个空域增强的特征直方图.在X~2统计量作为不相似度量计算的特征空间里,采用最近邻分类器完成分类识别.实验表明,该方法优于其它的基于LBP的人脸识别算法. 相似文献
14.
针对人脸识别特征提取阶段中的数据降维方法往往难以兼顾保持全局与局部特征信息的问题,以及匹配识别阶段贝叶斯分类器中小样本问题,提出了一种融合全局与局部特征的贝叶斯人脸识别方法。该方法通过核主元分析提取出人脸数据的全局非线性特征,并在此基础上通过正交化局部敏感判别分析挖掘出人脸数据的局部流形结构信息,以达到提取出具有高判别力低维本质人脸特征的目的;采用一种最大信息量协方差选择的方法,来对协方差矩阵进行估算,以解决贝叶斯分类器设计中的小样本问题。在ORL、AR、 YALE、FLW人脸库上设计实验来进行验证。结果表明,提出的特征提取算法以及对贝叶斯分类器的改进取得了比较好的效果,通过对这两个阶段的优化,可以显著提升人脸识别的效果。 相似文献
15.
人脸识别是当前人工智能和模式识别的研究热点。基于对小波分解和局部二进制模式(LBP)分析,提出了一种多级LBP直方图的序列特征 (M-HSLBP) 的提取方法。2维的小波分解具有对表情变化不敏感的特点,可以很好地压缩和表征人脸图像的特征;LBP是一种有效的纹理描述算子,使用多级可变大小的子窗口对小波变换后的图像进行扫描,对各级子图像进行改进LBP变换并形成多级LBP直方图序列特征,这种特征既能反映人脸局部特征又能反映其整体特征。径向基网络作为分类器具有很高的推广性能,有利于大容量样本的分类。在对人脸库ORL和YEL的识别实验中,该算法识别率达到98%以上,与传统算法相比,取得了更好的识别结果。 相似文献
16.
韩璐 《计算机技术与发展》2012,(9):87-90
局部保持投影(locality preserving projection,LPP)和线性鉴别分析(linear discrimin antanalysis,LDA)是两种有效的一维特征提取方法,广泛应用于人脸识别领域。但采用一维特征提取方法时会存在列向量化时样本的结构信息被破坏和样本在提取特征时必须对协方差矩阵进行特征分解,对于高维小样本的问题很容易出现协方差矩阵奇异的问题。文中提出将二维局部保持投影(2DLPP)和二维线性鉴别分析(2DLDA)这两种方法在特征层进行融合并应用在人脸识别。基于人脸库AR上的实验表明,该方法比传统的IJPP和LDA识别性能更高,因此可作为一种新的人脸识别方法。 相似文献
17.
18.
提出一种联合局部三值模式(LTP)和局部相位量化(LPQ)的人脸识别方法,该方法首先对预处理后的人脸分别采用LTP算子、LPQ算子提取各自的直方图,然后,通过特征选择将两者联合为LTP_LPQ直方图,最后通过最近邻分类器进行分类识别。在ORL和YALE标准人脸数据库上的实验表明,该方法能有效地提高人脸的识别率。 相似文献