首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production by N-nitroso compounds of O6-alkylguanine (O6-alkylG) in DNA directs the misincorporation of thymine during DNA replication, leading to G:C to A:T transition mutations, despite the fact that DNA containing O6-alkylG:T base pairs is less stable than that containing O6-alkylG:C pairs. We have examined the kinetics of incorporation by Klenow fragment (KF) of Escherichia coli DNA polymerase I of thymine (T) and of cytosine (C) opposite O6-MeG in the template DNA strand. Both T and C were incorporated opposite O6-MeG much slower than nucleotides forming regular A:T or G:C base pairs. Using various concentrations of dTTP, dCTP, or their phosphorothioate (Sp)-dNTP alpha S analogues, or a mixture of dTTP and dCTP, the progress of incorporation of a single nucleotide in a single catalytic cycle of a preformed KF-DNA complex was measured (pre-steady-state kinetics). The results were consistent with the kinetic scheme (Kuchta, R. D., Benkovic, P., & Benkovic, S. J. (1988) Biochemistry 27, 6716-6725): (1) binding of dNTP to polymerase-DNA; (2) conformational change in polymerase; (3) formation of phosphodiester between the dNTP and the 3'-OH of the primer; (4) conformational change of polymerase; (5) release of pyrophosphate. The results were analyzed mathematically to identify the steps at which the rate constants differ significantly between the incorporation of T and C. The only significant difference was the 5-fold difference in the rates of formation of the phosphodiester bond (for dTTP, kforward = 3.9 s-1 and kback = 1.9 s-1; for dCTP, kforward = 0.7 s-1 and kback = 0.9 s-1). These pre-steady-state progress curves were biphasic with a rapid initial burst followed by an apparently steady-state rise. Deconvolution of these curves gave direct evidence for the importance of the conformational change after polymerization by showing that the curves represented the sum of the rapid accumulation of the product of step 3 followed by the slow conversion of that to the product of step 5 (because of the rapidity of the release of pyrophosphate there was no significant accumulation of the product of step 4). The equilibrium constants for each step suggest that the greatest change in the Gibbs free energy occurs at the conformational change after polymerization and that while the formation of the phosphodiester bond to T is slightly exothermic, that to C is slightly endothermic.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
An N-acetyl-2-aminofluorene (AAF) modified deoxyoligonucleotide duplex, d(C1-C2-A3-C4-[AAF-G5]-C6-A7-C8-C9).d(G10-G11-T12-G13-C14-++ +G15-T16-G17-G18), was studied by one- and two-dimensional NMR spectroscopy. Eight of the nine complementary nucleotides form Watson-Crick base pairs, as shown by NOEs between the guanine imino proton and cytosine amino protons for G.C base pairs or by an NOE between the thymine imino proton and adenine H2 proton for A.T base pairs. The AAF-G5 and C14 bases show no evidence of complementary hydrogen bond formation to each other. The AAF-G5 base adopts a syn conformation, as indicated by NOEs between the G5 imino proton and the A3-H3' and A3-H2'/H2" protons and by NOEs between the fluorene-H1 proton of AAF and the G5-H1' or C6-H1' proton. The NOEs from the C4-H6 proton to C4 sugar protons are weak, and thus the glycosidic torsion angle in this nucleotide is not well defined by these NMR data. The remaining bases are in the anti conformation, as depicted by the relative magnitude of the H8/H6 to H2' NOEs when compared to the H8/H6 to H1' NOEs. The three base pairs on each end of the duplex exhibit NOEs characteristic of right-handed B-form DNA. Distance restraints obtained from NOESY data recorded at 32 degrees C using a 100-ms mixing time were used in conformational searches by molecular mechanics energy minimization studies. The final, unrestrained, minimum-energy conformation was then used as input for an unrestrained molecular dynamics simulation. Chemical exchange cross peaks are observed, and thus the AAF-9-mer exists in more than a single conformation on the NMR time scale. The NMR data, however, indicate the presence of a predominant conformation (> or = 70%). The structure of the predominant conformation of the AAF-9-mer shows stacking of the fluorene moiety on an adjacent base pair, exhibiting features of the base-displacement [Grunberger, D., Nelson, J. H., et al. (1970) Proc. Natl. Acad. Sci. U.S.A. 66, 488-494] and insertion-denaturation models [Fuchs, R.P.P., & Daune, M. (1971) FEBS Lett. 14, 206-208], while the distal ring of the fluorene moiety protrudes into the minor groove.  相似文献   

4.
Riboflavin-mediated photosensitization has been shown to produce 8-hydroxyguanine (oh8Gua) in DNA. We investigated the specificity of mutation of photosensitized supF gene induced in Escherichia coli. The oh8Gua repair deficient E. coli mutant mutM and mutY were transformed with plasmid pUB3 carrying the supF gene irradiated with white light in the presence of riboflavin. Under these conditions, riboflavin photosensitization increased the amounts of oh8Gua in pUB3 DNA. Three types of a single base substitution occurring at G:C pairs were detected in both wild-type and mutM mutant strains. Almost all base substitutions were transversions to T:A or C:G pairs occurring at a similar extent in both wild-type and mutM strains. Mutations derived from mutY strain transformed with photosensitized DNA were only G:C to T:A transversions. These G:C to T:A transversions observed in the mutY strain were suggested to be the result of mispairing of oh8Gua with adenine. Riboflavin-mediated photosensitization may also produce lesions on DNA causing G:C to C:G changes by unknown mechanisms.  相似文献   

5.
Many laboratories have obtained data on mutagenicity of modified bases in naturally occurring DNA sequences. It has often been noted that mutation is favored in certain sequence contexts, sometimes termed 'hot spots'. This approach to the contribution of neighboring sequences does not permit a systematic study of both the qualitative and quantitative mutational frequencies. In the present experiments we have chosen to use the exocyclic adduct, 1,N6-etheno A (epsilonA), site-specifically placed in a defined 25-mer oligonucleotides in which epsilonA is flanked by differing 5' and 3' tandem bases. Mutation was assessed using an in vitro replication assay and five polymerases of varying fidelity. The relevant central sequences were 3' --> 5' -CC-epsilonA-CC-, -GG-epsilonA-GG-, -TT-epsilonA-TT-, -AA-epsilonA-AA-, -GG-epsilonA-TT-, -TT-epsilonA-AA-, -AT-epsilonA-TT- and -TA-epsilonA-TA-. Using the Klenow fragment (Kf) (exo+ or exo-) of E. coli Pol I, it was found the epsilonA is an ambiguous base and, with varying efficiencies, all four dNTPs could be inserted opposite epsilonA in all sequences. However, only 3' --> 5' -TT-epsilonA-TT-, -GG-epsilonA-TT- and -AT-epsilonA-TT- were fully extended to a significant extent. The only sequences essentially blocked at the position of epsilonA were -AA-epsilonA-AA- and -TT-epsilonA-AA-. The others were intermediate. When replication was performed with Sequenase, MMLV RT or HIV RT, different patterns were observed, in which replication terminated one base prior to epsilonA, at epsilonA, or one base after epsilonA without further extension. In favored sequences, using the Klenow fragment, an epsilonA x N pair could be extended to form normal basepairs. No extension could be demonstrated in sequences in which tandem adenines were 5' to epsilonA. Kinetic data showed that two of the epsilonA x N pairs, epsilonA x A and epsilonA x C, could form at 10 microM or less dNTP. Which bases were preferentially inserted opposite epsilonA was a function of the flanking bases. Under the kinetic conditions used, epsilonA x T did not form even at 1 mM dTTP. These results indicate that the chemical structure of an adduct is not the only determinant of mutagenic efficiency. It is likely that the effect of the adduct on replication is due to the changes in the structural environment conferred by the flanking bases.  相似文献   

6.
The RNA molecules that make up the spliceosome branch-point helix and the binding site for phage GA coat protein share a secondary structure motif in which two consecutive adenine residues occupy the strand opposite a single uridine, creating the potential to form one of two different A.U base pairs while leaving the other adenine unpaired or bulged. During the splicing of introns out of pre-mRNA, the 2'-OH of the bulged adenine participates in the transesterification reaction at the 5'-exon and forms the branch-point residue of the lariat intermediate. Either adenine may act as the branch-point residue in mammals, but the 3'-proximal adenine does so preferentially. When bound to phage GA coat protein, the bulged adenine loops out of the helix and occupies a binding pocket on the surface of the protein, forming a nucleation complex for phage assembly. The coat protein can bind helices with bulged adenines at either position, but the 3'-proximal site binds with greater affinity. We have studied this RNA motif in a 21 nucleotide hairpin containing a GA coat protein-binding site whose four nucleotide loop has been replaced by a more stable loop from the related phage Ms2. Using heteronuclear NMR spectroscopy, we have determined the structure of this hairpin to an overall precision of 2.0 A. Both adenine bases stack into the helix, and while all available NOE and coupling constant data are consistent with both possible A.U base pairs, the base pair involving the 5'-proximal adenine appears to be the major conformation. The 3'-proximal bulged adenine protonates at unusually high pH, and to account for this, we propose a model in which the protonated adenine is stabilized by a hydrogen bond to the uridine O2 of the A.U base pair. The 2'-OH of the bulged adenine adopts a regular A-form helical geometry, suggesting that in order to participate in the splicing reaction, the conformation of the branch-point helix in the active spliceosome may change from the conformation described here. Thus, while the adenine site preferences of the spliceosome and of phage GA may be due to protein factors, the preferred adenine is predisposed in the free RNA to conformational rearrangement involved in formation of the active complexes.  相似文献   

7.
The solution structure of d(CCATCAFBGATCC).d(GGATCAGATGG), containing the 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct, was refined using molecular dynamics restrained by NOE data obtained from 1H NMR. The modified guanosine was positioned opposite cytosine, while the aflatoxin moiety was positioned opposite adenosine in the complementary strand. Sequential 1H NOEs were interrupted between C5 and AFBG6, but intrastrand NOEs were traced through the aflatoxin moiety, via H6a of aflatoxin and H8 of the modified guanine. Opposite the lesion, the NOE between A16 H1' and G17 H8 was weak. A total of 43 NOEs were observed between DNA protons and aflatoxin protons. Molecular dynamics calculations restrained with 259 experimental and empirical distances, and using sp2 hybridization at AFBG6 N7, refined structures with pairwise rms differences < 0.85 A, excluding terminal base pairs. Relaxation matrix calculations yielded a sixth root rms difference between refined structures and NOE intensity data of 7.3 x 10(-2). The aflatoxin moiety intercalated on the 5'-face of the modified guanine. The extra adenine A16 was inserted between base pair AFBG6.C15 and the aflatoxin moiety. A 36 degree bending between the plane of base pair AFBG6.C15 and the plane of the aflatoxin moiety was predicted. The aflatoxin moiety stacked below the top domain of the oligodeoxynucleotide, which consisted of base pairs C1.G21, C2.G20, A3.T19, T4.A18, and C5.G17. The bottom domain consisted of base pairs AFBG6.C15, A7.T14, T8.A13, C9.G12, and C10.G11. The average winding angle between base pair C5.G17, the intercalated aflatoxin moiety, A16, and base pair AFBG6.C15 was reduced to 10 degrees. The preponderance of base pair substitutions in the aflatoxin B1 mutational spectrum, particularly G-->T transversions, suggests that the stability of this modified oligodeoxynucleotide, which models a templated +1 addition mutation, does not reliably predict the frequency of frame shifts.  相似文献   

8.
Several reactive oxygen species, including singlet oxygen (1O2) and hydroxyl free radical (.OH), may potentially be involved in the photoinactivation of viruses by agents such as methylene blue (MB) and rose bengal (RB). Both 1O2 and .OH also mediate the formation of 8-oxoguanine (8-oxoGua) in DNA and RNA. Evidence that MB-or RB-induced bacteriophage (R17 or Q beta) inactivation and 8-oxoGua formation in RNA result from 1O2 rather than .OH was obtained utilizing complementary experimental approaches which show that: (i) the rate of phage photoinactivation by MB was unchanged by the presence of iron chelators or by different temperatures in the 13-37 degrees C range; (ii) MB- and RB-mediated rates of 8-oxoGua formation in isolated RNA have very little, if any, temperature dependence, in contrast to a significant temperature dependence of 8-oxoGua formation by a .OH generating system, the ultraviolet light irradiation of H2O2; and (iii) deuterium oxide (D2O) enhanced the RB-mediated rate of phage photoinactivation and 8-oxoGua formation in isolated RNA. The presence of superoxide dismutase in the RB photoinactivation reaction did not alter the rate of phage inactivation. The data suggest that 8-oxoGua serves as a marker that correlates qualitatively with 1O2-mediated lethal lesions in RNA bacteriophages.  相似文献   

9.
This study reports on the solution conformation of the covalent (+)-trans-anti-[BP]dG adduct (derived from the binding of the highly mutagenic and tumorigenic (+)-anti-benzo[a]pyrene diol epoxide to the N2 of deoxyguanosine) positioned opposite dC at a junctional site in the d(A1-A2-C3-[BP]G4-C5- T6-A7-C8-C9-A10-T11-C12-C13).d(G14-G15-A16-T17-+ ++G18-G19-T20-A21-G22-C23) 13/10-mer DNA sequence. The 13-mer represents the template strand containing the junction [BP]dG4 lesion while the complementary 10-mer models a primer strand which extends upto and is complementary to the modified dG4 residue. The solution conformation has been determined by initially incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space and subsequently through restrained molecular dynamics calculations based on a NOE distance and intensity refinement protocol. The duplex segment retains a minimally perturbed B-DNA conformation with all base pairs, including the junctional [BP]dG4.dC23 pair, in Watson-Crick hydrogen-bonded alignments. The pyrenyl ring is not stacked over the adjacent dC5.dG22 base pair but is positioned on the minor groove-side of the [BP]dG moiety and directed toward the 5'-end of the template strand. The pyrenyl ring stacks over the base of the non-adjacent dA2 residue in one direction and the sugar ring of dC23 in the other direction. The solution structure of the (+)-trans-anti-[BP]dG adduct opposite dC in the 13/10-mer in which the modified deoxyguanosine adopts an anti glycosidic torsion angle (this study) is in striking contrast to the structure of the same (+)-trans-anti-[BP]dG moiety in a 13/9-mer of the same sequence but without the dC23 residue positioned opposite the adduct site [Cosman, M., et al. (1995) Biochemistry 34, 15334-15350]. For the latter case, the aromatic portion of the BP residue stacks over the adjacent dC5.dG22 base pair, the modified deoxyguanosine adopts a syn glycosidic torsion angle and is displaced toward the major groove direction. Insights into the factors that affect the sequence and context dependent conformations of stereoisomeric [BP]dG lesions have emerged following comparison of these two structures with the minor groove conformations of the same (+)-trans-anti-[BP]dG lesion in the fully complementary 11-mer duplex [Cosman, M., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918] and in the base displaced-intercalative conformation of the 11/10-mer deletion duplex containing a -1 deletion site opposite the lesion [Cosman, M., et al. (1994) Biochemistry 33, 11507-11517]. The contributing factors where applicable include Watson-Crick base pairing at the site of the lesion, positioning of the carcinogen within the floor of the minor groove, and the tendency of the bulky hydrophobic aromatic BP residue to assume stacked or intercalative conformations.  相似文献   

10.
Sequencing by the recently reported hybridization technique requires the formation of DNA duplexes with similar stabilities. In this paper we describe a new strategy to obtain DNA duplexes with a thermal stability independent of their AT/GC ratio content. Melting data were acquired on 35 natural and 27 modified duplexes of a given length and of varying base compositions. Duplexes built with AT and/or G4EtC base pairs exhibit a thermal stability restrained to a lower range of temperature than that of the corresponding natural compounds (16 instead of 51 degrees C). The 16 degrees C difference in thermal stability observed between the least stable and the most stable duplex built with AT and/or G4EtC base pairs is mainly due to the sequence effect and not to their AT/G4EtC ratio content. Thus N -4-ethyl-2'-deoxycytidine (d4EtC) hybridizes specifically with natural deoxyguanosine leading to a G4EtC base pair whose stability is very close to that of the natural AT base pair. Oligonucleotide probes involving d4EtC can be easily prepared by chemical synthesis with phosphoramidite chemistry. Modified DNA targets were successfully amplified by random priming or PCR techniques using d4EtCTP, dATP, dGTP and dTTP in the presence of DNA polymerase. This new system might be very useful for DNA sequencing by hybridization.  相似文献   

11.
Bacteriophage T7 4A' protein is a DNA helicase that unwinds DNA in a reaction coupled to dTTP hydrolysis. To understand better its mechanism of DNA unwinding, we characterized a set of 4A' mutant proteins (Washington, M. T., Rosenberg, A. H., Griffin, K., Studier, F. W., and Patel, S. S. (1996) J. Biol. Chem. 271, 26825-26834). We showed here, using single turnover DNA unwinding assays, that the 4A'/E348K mutant protein had the unusual property of unwinding DNA (with a 5-6-fold slower rate) despite a significant defect in its dTTPase activity (a 25-30-fold slower rate). Comparing the DNA unwinding rates to the dTTPase rates, we estimated the DNA unwinding efficiencies of both wild-type (about 1 base pair unwound per dTTP hydrolysis) and mutant (4 to 6 base pairs unwound per dTTP hydrolysis). Thus the mutant had a 4-6-fold improvement in its DNA unwinding efficiency over that of the wild-type. We believe that this mutant undergoes less slippage (uncoupled dTTP hydrolysis) than the wild-type. We speculate that nature has selected for a high rate of DNA unwinding rather than a high efficiency of DNA unwinding. Thus even though the mutant is more efficient at DNA unwinding, the wild-type probably was selected because it unwinds DNA faster.  相似文献   

12.
Replication of the oxidative lesion 8-oxo-7,8-dihydroguanine (GO) leads to the formation of both 8-oxo-7,8-dihydroguanine:adenine (GO:A) and 8-oxo-7,8-di-hydroguanine:cytosine (GO:C) pairs. The repair and mutagenic potency of these two kinds of base pairs were studied in simian COS7 and human MRC5V1 cells using the shuttle vector technology. Shuttle vectors carrying a unique GO residue opposite either a C or an A were constructed, then transfected into recipient mammalian cells. DNA repair resulting in G:C pairs and mutation frequency, were determined using resistance to digestion by the Ngo MI restriction enzyme for screening and DNA sequencing of suspect mutants. Results showed that the GO:C mismatch was well repaired since almost no mutations were detected in the plasmid progeny obtained 72 h after cell transfection. The GO:A pair was poorly repaired since only 32-34% of the plasmid progeny contained G:C whereas two thirds contained A:T at the original site. Repair kinetics measured with a non-replicating vector deleted by 13 bp at the SV40 replication origin, showed that GO:A was slowly repaired. Only 30% of the mispairs were corrected in 12 h. During this time 100% of the plasmids containing GO:A pairs were replicated as seen by the replication kinetics in a vector with an intact SV40 replication origin. These results show that, under our experimental conditions, replication is occurring before completion of DNA repair which explains the high mutagenic potency of the GO:A mispair.  相似文献   

13.
14.
The crystal structure of the dodecamer, d(CGCIAATTCGCG), has been determined at 2.4 A resolution by molecular replacement, and refined to an R-factor of 0.174. The structure is isomorphous with that of the B-DNA dodecamer, d(CGCGAATTCGCG), in space group P2(1)2(1)2(1) with cell dimensions of a = 24.9, b = 40.4, and c = 66.4 A. The initial difference Fourier maps clearly indicated the presence of inosine instead of guanine. The structure was refined with 44 water molecules, and compared to the parent dodecamer. Overall the two structures are very similar, and the I:C forms Watson-Crick base pairs with similar hydrogen bond geometry to the G:C base pairs. The propeller twist angle is low for I4:C21 and relatively high for the I16:C9 base pair (-3.2 degrees compared to -23.0 degrees), and the buckle angles alter, probably due to differences in the contacts with symmetry related molecules in the crystal lattice. The central base pairs of d(CGCIAATTCGCG) show the large propeller twist angles, and the narrow minor groove that characterize A-tract DNA, although I:C base pairs cannot form the major groove bifurcated hydrogen bonds that are possible for A:T base pairs.  相似文献   

15.
BACKGROUND: Cell-permeable small molecules that target predetermined DNA sequences with high affinity and specificity have the potential to control gene expression. A binary code has been developed to correlate DNA sequence with side-by-side pairings between N-methylpyrrole (Py) and N-methylimidazole (Im) carboxamides in the DNA minor groove. We set out to determine the relative energetics of pairings of Im/Py, Py/Im, Im/Im, and Py/Py for targeting G.C and A.T base pairs. A key specificity issue, which has not been previously addressed, is whether an Im/Im pair is energetically equivalent to an Im/Py pair for targeting G.C base pairs. RESULTS: Equilibrium association constants were determined at two five-base-pair sites for a series of four six-ring hairpin polyamides, in order to test the relative energetics of the four aromatic amino-acid pairings opposite G.C and A.T base pairs in the central position. We observed that a G.C base pair was effectively targeted with Im/Py but not Py/Im, Py/Py, or Im/Im. The A.T base pair was effectively targeted with Py/Py but not Im/Py, Py/Im, or Im/Im. CONCLUSIONS: An Im/Im pairing is energetically disfavored for the recognition of both A.T and G.C. This specificity will create important limitations on undesirable slipped motifs that are available for unlinked dimers in the minor groove. Baseline energetic parameters will thus be created which, using the predictability of the current pairing rules for specific molecular recognition of double-helical DNA, will guide further second-generation polyamide design for DNA recognition.  相似文献   

16.
Combined NMR-molecular mechanics computational studies were undertaken on the C8-deoxyguanosine adduct formed by the carcinogen 1-nitropyrene embedded in the d(C5-[AP]G6-C7).d(G16-C17-G18) sequence context in a 11-mer duplex, with dC opposite the modified deoxyguanosine. The exchangeable and nonexchangeable protons of the aminopyrene moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. There was a general broadening of several proton resonances for the three nucleotide d(G16-C17-G18) segment positioned opposite the [AP]dG6 lesion site resulting in weaker NOEs involving these protons in the adduct duplex. The solution conformation of the [AP]dG.dC 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by upper and lower bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs. The modified deoxyguanosine ring of [AP]dG6 is displaced into the major groove and stacks with the major groove edge of dC5 in the adduct duplex. Both carbon and proton chemical shift data for the sugar resonances of the modified deoxyguanosine residue are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue. The dC17 base on the partner strand is displaced from the center of the helix toward the major groove as a consequence of the aminopyrene ring intercalation into the helix. This base-displaced intercalative structure of the [AP]dG.dC 11-mer duplex exhibits several unusually shifted proton resonances which can be accounted for by the ring current contributions of the deoxyguanosinyl and pyrenyl rings of the [AP]dG6 adduct. In summary, intercalation of the aminopyrene moiety is accompanied by displacement of both [AP]dG6 and the partner dC17 into the major groove in the [AP]dG.dC 11-mer duplex.  相似文献   

17.
Oligonucleotide-directed triple helix formation is mostly restricted to oligopyrimidine*oligopurine sequences of double helical DNA. An interruption of one or two pyrimidines in the oligopurine target strand leads to a strong triplex destabilisation. We have investigated the effect of nucleotide analogues introduced in the third strand at the site opposite the base pair inversion(s). We show that a 3-nitropyrrole derivative (M) discriminates G*C from C*G, A*T and T*A in the presence of a triplex-specific ligand (a benzo[e]pyridoindole derivative, BePI). N6-methoxy-2,6-diaminopurine (K) binds to an A*T base pair better than a T*A, G*C or C*G base pair. Some discrimination is still observed in the presence of BePI and triplex stability is markedly increased. These findings should help in designing BePI-oligonucleotide conjugates to extend the range of DNA sequences available for triplex formation.  相似文献   

18.
The potent tumorigen and mutagen (+)-7(R),8(S)-dihydroxy-9(S), 10(R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene ((+)-anti-BPDE) is a metabolite of benzo[a]pyrene that binds predominantly to the exocyclic amino group of guanine residues in DNA in vivo and in vitro. While the (-)-7S,8R,9R,10Senantiomer, (-)-anti-BPDE, also reacts with DNA to form similar covalent N2-deoxyguanosyl adducts, this diol epoxide is nontumorigenic and its mutagenic activities are different from those of (+)-anti-BPDE. In this work, T4 ligase-induced cyclization methods have been employed to demonstrate that the (+)-anti-[BP]-N2-dG lesions (G*) cause significantly greater amounts of bending and circularization of the one-base overhang undecamer duplex 5'-d(CACAT[G*]TACAC).d(TGTACATGTGG) than the stereoisomeric oligonucleotide duplex with G* = (-)-anti-[BP]-N2-dG. In the case of the (+)-anti-BPDE-modified oligonucleotides, the ratio of circular to linear DNA multimers reaches values of 8-9 for circle contour sizes of 99-121 base pairs, while for the (-)-anti-[BP]-N2-dG-modified DNA this ratio reaches a maximum value of only approximately 1 at 154-176 base pairs. Assuming a planar circle DNA model, the inferred bending angles for 90-92% of the observed circular ligation products range from 30 to 51 degrees per (+)-trans-anti-[BP]-N2-dG lesion and from 20 to 40 degrees per (-)-trans-anti-[BP]-N2-dG lesion. In the case of unmodified DNA, the probability of circular product formation is at least 1 order of magnitude less efficient than in the BPDE-modified sequences and about 90% of the circular products exhibit bending angles in the range of 14 -19 degrees . In the most abundant circular products observed experimentally, the bending angles are 40 degrees and 26 +/- 2 degrees per (+)-anti-[BP]- or (-)-anti-[BP]-modified 11-mer; these values correspond to a net contribution of 21-26 degrees and 5-19 degrees , respectively, to the observed overall bending per lesion. The coexistence of circular DNA molecules of different sizes and, therefore, different average bending angles per lesion, suggest that the lesions induce both torsional flexibility and flexible bends, which permit efficient cyclization, especially in the case of (+)-trans-[BP]-N2-dG adducts. The NMR characteristics of (+)-trans-[BP]-N2-dG lesion in the 11-mer duplex 5'-d(CACAT[G*]TACAC).d(GTGTACATGTG) indicate that all base pairs are intact, except at the underlined base pairs. This suggests a distortion in the normal conformation of the duplex on the 5'-side of the modified guanosine residue, which may be due to bending enhanced base pair opening and bending induced by the bulky carcinogen residue. The implications of base sequence-dependent flexibilities and conformational mobilities of anti-[BP]-N2-dG lesions on DNA replication and mutation are discussed.  相似文献   

19.
UV irradiation induces the dimerization of synthetic single-stranded, 80-mer oligonucleotides with self-complementary, alternating purine-pyrimidine sequences, and terminal 5'- and 3'-thymines; this process can be reversed by photoreactivation. The UV-induced 160-mers are sensitive to digestion by the restriction enzyme SnaBI, but monomers are insensitive to digestion, indicating that UV irradiation stabilizes the formation of double-stranded DNA. These results suggest that UV irradiation of these 80-mer oligonucleotide substrates induces the formation of a novel cyclobutane thymine dimer which lacks an intradimer phosphodiester bond (CPD*). This CPD*, linking the terminal thymines of two separate 80-mer molecules, is formed in a double-stranded DNA region created by self-annealing and intermolecular hybridization of the two 80-mer strands. We have found that these UV-induced CPD* in 160-mers are sensitive to cleavage by the nucleotide excision enzyme complex UvrABC nuclease, but resistant to cleavage by the cyclobutane pyrimidine dimer-specific enzyme T4 endonuclease V. However, pretreatment of the 160-mers with ligase reverses their sensitivity to these two enzymes, significantly reducing their susceptibility to cleavage by UvrABC nuclease but dramatically increasing their susceptibility to cleavage by T4 endonuclease. The biological significance of these findings is discussed.  相似文献   

20.
Thermal denaturation of the B form of double-stranded DNA has been probed by differential scanning calorimetry (DSC) and Raman spectroscopy of 160 base pair (bp) fragments of calf thymus DNA. The DSC results indicate a median melting temperature Tm = 75.5 degrees C with calorimetric enthalpy change delta Hcal = 6.7 kcal/mol (bp), van't Hoff enthalpy change delta HVH = 50.4 kcal/mol (cooperative unit), and calorimetric entropy change delta Scal = 19.3 cal/deg.mol (bp), at the experimental conditions of 55 mg DNA/ml in 5 mM sodium cacodylate at pH 6.4. The average cooperative melting unit (nmelt) comprises 7.5 bp. The Raman signature of 160 bp DNA is highly sensitive to temperature. Analyses of several conformation-sensitive Raman bands indicate the following ranges for thermodynamic parameters of melting: 43 < delta HVH < 61 kcal/mol (cooperative unit), 75 < Tm < 80 degrees C and 6 < (nmelt) < 9 bp, consistent with the DSC results. The changes observed in specific Raman band frequencies and intensities as a function of temperature reveal that thermal denaturation is accompanied by disruption of Watson-Crick base pairs, unstacking of the bases and disordering of the B form backbone. These three types of structural change are highly correlated throughout the investigated temperature range of 20 to 93 degrees C. Raman bands diagnostic of purine and pyrimidine unstacking, conformational rearrangements in the deoxyribose-phosphate moieties, and changes in environment of phosphate groups have been identified. Among these, bands at 834 cm-1 (due to a localized vibration of the phosphodiester group), 1240 cm-1 (thymine ring) and 1668 cm-1 (carbonyl groups of dT, dG and dC), are shown by comparison with DSC results to be the most reliable quantitative indicators of DNA melting. Conversely, the intensities of Raman marker bands at 786 cm-1 (cytosine ring), 1014 cm-1 (deoxyribose ring) and 1092 cm-1 (phosphate group) are largely invariant to melting and are proposed as appropriate standards for intensity normalizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号