首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多晶体纳米切削的分子动力学仿真研究   总被引:1,自引:0,他引:1  
分子动力学方法是探索纳米级机械加工机理的有力工具。这里运用分子动力学方法对人工构造的多晶体材料———多晶硅的纳米切削进行了三维仿真,采用了最适用于碳族材料的Tersoff势函数来描述工件上的硅原子、刀具上的碳原子及他们之间的相互作用。材料模型中包含了点缺陷、线缺陷、不同晶向及晶界等在多晶体材料中出现频繁的典型结构。通过对结果的分析,使我们对多晶体的纳米切削机理有了新的认识。  相似文献   

2.
介绍分子动力学的基本原理、算法,阐述它在研究纳米机械加工机理中的重要作用。介绍国外应用分子动力学研究超精密切削机理的现状和方法。指出应用分子动力学研究纳米机械加工机理的发展趋势。认为分子动力学是探索 米机械加工机理的有力工具,它必将推动纳米机械加工技术的发展。  相似文献   

3.
采用分子动力学模拟方法研究单晶铜材料表面纳米切削特性。通过对单晶铜纳米切削过程进行分子动力学建模、计算与分析,研究了不同切削速度及切削厚度对单晶铜材料表面纳米切削过程中微观接触区域原子状态和切削力变化的影响规律。研究结果发现:在单晶铜表面纳米切削过程中,切削速度越高,切屑堆积体积越大,切屑里原子的排列越紧密,位错缺陷分布区域越大;在同种切削速度下,切削厚度越大,在刀具前方堆积的切屑体积越大,位错缺陷越多。不同切削速度及切削厚度下,切削力曲线均在切削初期呈上升趋势,达到稳定切削状态后围绕稳定值进行波动,但在切削初期,切削速度及切削厚度越大,切削力上升幅度越大;达到稳定切削状态后,切削速度、切削厚度越大,切削力越大。  相似文献   

4.
为了进一步深入研究纳米切割的机理,并拓展纳米切削的应用,有必要对单晶铜纳米切削机理展开详细的分析与研究。利用分子动力学的仿真软件,建立了单晶铜的纳米切削仿真模型,仿真研究不同厚度和不同切削速度下的纳米切割过程。研究结果表明:单晶铜纳米切削过程实质为原子的剪切和挤压,随着切削厚度和切削速度的不断增加,切削力也增大。其中,切削厚度对切削力的影响更为直接。研究成果为下一步纳米切削的深入研究提供了参考依据。  相似文献   

5.
当材料切削厚度达到纳米级别,材料去除机理理论尚不成熟,需要通过分子动力学模拟仿真来研究纳米级切削仿真,从而进一步研究材料去除的机理。对于材料的去除方式,主要就不同刀具形状及切削角度来详细讨论了材料的去除方式。在切削前角较小的情况下,材料去除主要以推挤方式去除。由于在纳米级尺度下,随着刀具的移动,刀具前端的单晶硅变为非晶状态,原子晶格变为无序状态,一部分原子向上移动形成切屑,材料去除是不可能类似剪切方式有面的滑移的方式去除的,只能以原子方式去除,故只能以推挤方式进行材料去除。  相似文献   

6.
目前超精密加工领域的进一步发展在一定程度上受到纳米加工机理缺乏深入研究的限制,用建立在连续介质力学基础上的有限元方法和传统加工的剪切模型来解释纳米切削机理显然是不合适的,虽然有人用分子动力学计算和仿真纳米切削过程,但由于计算规模不够大,而相应级别的切削实验困难,还不能相互验证.为此,文中搭建了可以实现微纳米切削的实验装置,从实验的角度研究纳米切削机理,为民用工业和国防工业中高精度零件和元器件的超精密和纳米加工提供必要的实验数据支撑.  相似文献   

7.
基于Poisson-Voronoi和Monte Carlo方法构建了多晶铜分子动力学模型,研究了纳米切削中多晶铜材料去除、切削力变化及晶界与位错间的相互转化机制。研究结果表明:晶界的阻碍作用使得切屑流向发生了改变,并在已加工表面形成凹槽和毛刺;切削过程中晶界前方材料变形能的逐渐积聚及晶界的最终断裂,造成了切削力发生由最大峰值到最小谷值的大幅波动;晶界附近的材料去除经历了材料变形积聚、位错穿越晶界、晶界转变为位错及晶界最终断裂等过程。通过详细分析多晶铜纳米切削中位错与晶界间的演化过程,揭示了晶界与位错间的相互转化机制,丰富了多晶铜亚表层损伤机理的内涵。  相似文献   

8.
随着微纳米技术的发展,已经进入到微纳米科技时代,但微纳米加工领域的进一步发展却在一定程度上受到微纳米加工技术以及对微纳米加工机理缺乏认识的限制,随着微纳米加工尺度的减小,微纳米加工试验也越来越困难,现有的基于连续介质力学和剪切模型的理论分析方法已不能适用,而采用分子动力学模拟方法却能克服这些困难.通过分析国内外基于分子动力学微纳米切削加工模拟的研究现状,探讨了其研究现状的不足及未来发展的方向.  相似文献   

9.
尚广庆  孙春华 《工具技术》2007,41(11):27-30
本文从分析建立传统切削加工模型的理论基础和分析方法入手,指出该模型应用于纳米切削加工的不合理性,应用分子动力学仿真建立了纳米切削的加工模型。研究表明,在纳米切削过程中,当切削深度小于最小切削深度时,工件材料只发生了弹塑性变形,没有形成切屑。  相似文献   

10.
微切削过程的分子动力学分析   总被引:2,自引:0,他引:2  
介绍一种用于分析纳米级微切削过程的分子动力学新方法。通过分子动力学分析,可以从原子观点上很好地解释切屑和表面生成的过程。最小切削厚度是决定加工精度的重要因素之一,在特定的切削条件下,最小切削厚度可以达到纳米级。  相似文献   

11.
从分析建立传统切削加工模型的理论基础和分析方法入手,指出该模型应用于纳米切削加工的不合理性,应用分子动力学仿真建立了纳米切削的加工模型.研究表明,在纳米切削过程中,当切削深度小于最小切削深度时,工件材料只发生了弹塑性变形,没有形成切屑.  相似文献   

12.
单晶铝纳米切削过程分子动力学模拟技术研究   总被引:11,自引:1,他引:11  
运用分子动力学模拟技术建立单晶纳米切削模型,对纳米切削过程进行模拟,从分子间作用力和位错的角度对切屑形成过程和纳米加工表面的形成机理进行分析,并对切削刃刃口半径的大小和刀具磨损对已加工表面质量的影响进行研究。  相似文献   

13.
颗粒微切削表面创成的分子动力学仿真研究   总被引:4,自引:1,他引:3  
颗粒微切削的性能和行为直接影响工件的表面质量,从材料去除规律和能量变化规律的角度对颗粒微切削作用的表面创成机理进行研究,分别采用EAM势、Morse势、Tersoff势描述单晶铜原子间、工件与颗粒、颗粒刀具原子间的作用力。分析纳米尺度下颗粒切削方向、颗粒切削速度、系综温度对颗粒微切削作用,通过探讨体系动能、体系势能、体系总能对工件原子运动规律的影响及颗粒微切削加工前后键角的变化形态,为阐述颗粒微切削作用的表面创成机理提供理论依据。研究结果表明正交切削比斜切削能获得更好的表面质量,颗粒速度与能量不存在线性关系,颗粒温度对体系能量有直接影响。通过分子动力学数值模拟得到体系的结构信息及相关热力学性质并对分子动力学的微观统计量进行分析计算,寻找合适的加工参数,为颗粒微切削加工工艺的发展提供技术支持。  相似文献   

14.
微纳切削加工是硬脆材料最高效的精密/超精密加工方法,而模拟简化试验与计算机模拟能为错综复杂的切削加工过程提供重要研究手段,便于从宏微观跨尺度层面阐释硬脆材料切削加工机理。有限元、离散元与分子动力学等计算机模拟手段能可视化虚拟实际切削加工难以展示的应力应变、裂纹演化、材料去除等动态过程。微纳切削加工模拟研究证实了硬脆材料在特定临界条件下发生脆塑转变效应,为纳米尺度的塑性域超精密加工技术提供重要依据。然而,微纳切削模拟研究方法因受限于理想化模型与时空尺度差异等因素,还存在一些亟待优化解决的复杂难题。  相似文献   

15.
为了提高计算精度和扩大计算尺寸,克服分子动力学模拟方法计算效率低、模拟尺寸小、边界条件影响大等特点,本文采用多尺度准连续介质力学数值方法对单晶铜纳米切削过程进行仿真,探究单晶铜的纳米切削机理。验证了不同的刀具前角、切削厚度对切削过程中的位错、切削力和残余应力的影响。实验结果表明,当采用同一把刀具时,随着切削厚度的增加切削过程中的切削比能逐渐减小而位错深度、残余应力均相应增加。当采用同一个切削厚度,不同的刀具前角时发现,采用负前角切削过程中的切削力波动范围最大。  相似文献   

16.
微纳米科技的发展和器械的小型化对精细加工过程提出了更高的要求,深入理解微纳米的切削规律至关重要。本文运用分子动力学方法,对大尺寸的单晶及多晶铜进行了切削深度为0.1μm的计算模拟,并就切削过程中单晶和多晶内部微结构演化、温度及切削力变化进行了分析及对比。结果表明:多晶铜在切削过程中位错滑移集中在刀具前沿几个晶粒内,对未切削工件区域的影响较小,温度分布更为集中,切削力也略小于单晶。  相似文献   

17.
采用VC++集成环境和OpenGL技术开发了面向微构件特性评价的分子动力学模拟软件系统(MDIS).MDIS模拟系统可以实现微构件的纳米切削加工和微拉伸等参数化分子动力学仿真,同时可以实现特殊微构件-单壁碳纳米管的力学特性评价.软件利用了模块化设计思想,界面友好,易于操作,集成度高,适合微构件综合分子动力学分析.采用MDIS系统对金刚石刀具切削单晶铜材料以及单壁碳纳米管与单晶硅材料相互作用的分子动力学模拟进行了仿真模拟研究.  相似文献   

18.
纳米工程中大规模分子动力学仿真算法的研究进展   总被引:2,自引:0,他引:2  
综述了借助分子动力学仿真方法研究纳米工程领域中的单晶材料纳米压痕、拉伸、切削和磨削,非晶材料的纳米压痕和多晶材料的塑性变形等方面.介绍提高单机仿真规模的Verlet列表法、Cell Linked链表法、网格邻近列表链表法和列表势等串行算法,还描述原子分解法、作用力分解法和空间区域分解法等通过增加CPU的数量使仿真规模得到大大提高的并行算法.同时,从串行算法和并行算法两方面对国内外学者在该领域的研究现状进行较全面的综述.最后,指出目前的分子动力学仿真规模还不足以满足需求,仿真算法还需本质上的突破.  相似文献   

19.
采用Voronoi方法建立了多晶铜切削模型,基于分子动力学方法实现了多晶铜纳米切削加工的二维分子动力学仿真。分别选用EAM势函数和Morse势函数来计算工件原子间以及工件原子和刀具原子间的相互作用。对切削过程和切削力的变化进行了分析,发现晶界会阻止位错向晶粒内部传播,在已加工区域表面,前一晶粒中的原子会随刀具运动到下一晶粒中形成晶界,切削过程中切削力随时间波动剧烈,并在晶界处会出现瞬时的峰值。  相似文献   

20.
为研究刀具磨损的微观机理,以单晶铝为例,采用分子动力学方法对纳米切削中刀具失效的原子级物理本质进行研究。模拟结果显示,随着切削深度的增加,能够形成化学键的配对原子数也急剧增加,导致刀具的扩散磨损加剧;晶体的各向异性对刀具扩散磨损影响很小,说明扩散磨损主要是一种化学过程;扩散磨损生成的积屑瘤代替刀具进行切削,使得超精密加工的表面质量恶化,切削区域温度上升,进一步加剧扩散磨损过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号