首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The force needed to pull a cylindrical stud from a soft elastomeric film depends on their elastic and geometric properties. For a rigid stud and a thick elastomeric film, the pull-off stress (σ) depends on the elastic modulus (E) of the film and the radius (a) of the stud as σ ∼ (E/a)1/2 (soft adhesion). However, when the film is very thin, the pull-off stress is significantly higher than the case with thick films, and its value depends on the elastic modulus and the thickness (h) of the film as σ ∼ (E/h)1/2 (hard adhesion). Here, we study the pull-off behavior of a soft cylindrical stud, one flat end of which is coated with a high modulus thin baseplate. As the flexural rigidity of this baseplate is varied, we observe the transition between the two types of adhesion. We present a simple physical interpretation of the problem, which could be of value in understanding various biofouling and adhesive situations.  相似文献   

2.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

3.
The effects of long term oxidation on the microstructural modification and on the electrical resistivity and mechanical strength of an AlN–SiC–MoSi2 electroconductive ceramic composite are presented. The microstructure of the pressureless sintered composite is described and the oxidation behaviour is discussed. The formation of protective mullite layer at temperatures above 1000 °C provides good oxidation resistance for use at higher temperatures. At temperatures below 1000 °C, the AlN/SiC matrix disables the “pesting” phenomena and strength degradation, despite the fact that at these temperatures MoSi2 oxidizes rapidly. The surface modification induced by oxidation on AlN–SiC–MoSi2 composites does not affect the mechanical strength, while the electrical conductivity strongly decreases.  相似文献   

4.
Preparations and physico-chemical characterizations of NASICON-type compounds in the system Li1+xAlxA2−xIV(PO4)3 (AIV=Ti or Ge) are described. Ceramics have been fabricated by sol-gel and co-grinding processes for use as ionosensitive membrane for Li+ selective electrodes. The structural and electrical characteristics of the pellets have been examined. Solid solutions are obtained with Al/Ti and Al/Ge substitutions in the range 0≤x≤0·6. A minimum of the rhombohedral c parameter appears for x about 0·1 for both solutions. The grain ionic conductivity has been characterized only in the case of Ge-based compounds. It is related to the carrier concentration and the structural properties of the NASICON covalent skeleton. The results confirm that the Ti-based framework is more calibrated to Li+ migration than the Ge-based one. A grain conductivity of 10−3 S cm−1 is obtained at 25°C in the case of Li1·3Al0·3Ti1·7(PO4)3. A total conductivity of about 6×10−5 S cm−1 is measured on sintered pellets because of grain boundary effects. The use of such ceramics in ISE devices has shown that the most confined unit cell (i.e. in Ge-based materials) is more appropriate for selectivity effect, although it is less conductive.©  相似文献   

5.
The previously described “redoxokinetic effect” is used to indicate the end-points of titrations of Fe2+ with Cr2O72-, sulphuric acid with sodium hydroxide, AsO2- with I2 and Ag+ with Cl. With the first three systems an accuracy of 0·1 per cent is possible. The method is not suited to the fourth system.

Abstract

Titrations of sulphuric acid vs. sodium hydroxide at 0·1 N concentration and ferrous ammonium sulphate vs. potassium dichromate at 0·05 N concentration can be carried out with an accuracy of ±0·1 per cent using the redoxokinetic technique. A very sharp end-point was obtained in the case of iodine vs. arsenite titration at 0·1 N concentration. Silver nitrate vs. chloride titrations cannot be carried out by the redoxokinetic technique.

Addition of MnSO4 to the extent of 50 g/l. of the solution enhances the precision considerably in the titration of dilute solutions of ferrous ammonium sulphate with dichromate.  相似文献   


6.
《Drying Technology》2006,24(12):1569-1582
A new approach to experimental evaluation of mass transfer resistances from drying experiments is proposed. A composite model of ginseng root mass transfer, based on one-dimensional treatment of diffusive and convective resistances as additive components of radial mass transfer, was developed. Mass transfer resistance was evaluated from a linear relationship between measured flux and thermodynamic driving force. Partitioning of mass transfer resistance into diffusive (core and skin) and convective (air boundary layer) resistances was done by modification of boundary conditions: (a) high (3 m/s) and low (1 m/s) air velocity; (b) skin removal. Total radial mass transfer resistance was evaluated as (146 ± 6) ∗ 106 s/m at 38°C, significantly decreasing to (48 ± 1.5) ∗ 106 s/m at 50°C. Boundary resistance was evaluated as (54 ± 5) ∗ 106 s/m at 38°C and (26 ± 3) ∗ 106 s/m at 50°C in the entire range of moisture contents. Core and skin resistances were both moisture dependent: core resistance increased from initial value of (6 ± 1) ∗ 106 s/m to (61 ± 6) ∗ 106 s/m toward the end of drying, whereas skin resistance decreased from initial value of (92 ± 5) ∗ 106 s/m to (25 ± 5) ∗ 106 s/m at the endpoint of drying. However, the sum of core and skin resistances, which represents composite diffusive resistance of intact ginseng root, was constant and independent of moisture content: (91 ± 4.6) ∗ 106 s/m at 38°C and (22 ± 1.6) ∗ 106 s/m at 50°C. The relationship between mass transfer resistance R and drying rate factor k = 1/RC was used for verification of the composite model.  相似文献   

7.
XPS, EEL, Auger and FTIR spectroscopies were used to testify the influence of chemical treatment upon the state of C-atoms in the core and on the surface of nanodiamond particles. The study was carried out with ND (JSC “Diamond Centre”). The different kinds of treatments were done ex-situ: with air (5 h) at 200 and 400 °C; with hydrogen (5 h) at 800, 850 and 900 °C; with fluorine (48 h) at 20 °C and 0.5 atm. Noticeable change was not found in the state of C-atoms both on the surface and up to 10 monolayers after these treatments. The concentration of F in the sample is equal to  9 at.%. The binding energy of the F 1s differs from the one in functional groups— –CF2, –CF. Nevertheless FTIR spectra show bands that can be related to С–О, С–F bonds.  相似文献   

8.
The hydrodynamic characteristics in aqueous solution at ionic strength I=0.2  of carboxymethylchitins of different degrees of chemical substitution have been determined. Experimental values varied over the following ranges: the translational diffusion coefficient (at 25.0°C), 1.1<107×D<2.9 cm2 s−1; the sedimentation coefficient, 2.4<s<5.0 S; the Gralen coefficient (sedimentation concentration-dependence parameter), 130<ks<680 mL g−1; the intrinsic viscosity, 130<[η]<550 mL g−1. Combination of s with D using the Svedberg equation yielded ‘sedimentation–diffusion' molecular weights in the range 40 000<M<240 000 g mol−1. The corresponding Mark–Houwink–Kuhn–Sakurada (MHKS) relationships between the molecular weight and s, D and [η] were: [η]=5.58×10−3 M0.94; D=1.87×10−4 M−0.60; s=4.10×10−15 M0.39. The equilibrium rigidity and hydrodynamic diameter of the carboxymethylchitin polymer chain is also investigated on the basis of wormlike coil theory without excluded volume effects. The significance of the Gralen ks values for these substances is discussed.  相似文献   

9.
A model for aerosol-phase densification of particles during their synthesis by spray pyrolysis is presented. The model was used to describe the evolution of the specific surface area of PdO powders synthesized at temperatures between 400 to 800 °C (residence times 27.9 to 22.7 s). Surface areas and grain sizes ranged between 56 m2/g and 4 nm at 400 °C to 3.2 m2/g and 40 nm at 800 °C The characteristic coalescence lime was determined as: τ= 1.7 x 1013T d3 exp(1.3 x 105/RT) [for lattice diffusion] and t = 2.7 x 1019Td4exp (1.6 x 105/RT) [for grain boundary diffusion] (τ is in seconds, Tin degrees Kelvin, R is 8.314J/(mol.K)and d is in meters), but the data and model did not allow identification of the specific mechanism. The model provides a general approach for correlating changes in particle surface area with reactor operating conditions that is applicable to a wide variety of materials.  相似文献   

10.
Limiting currents were measured in an unstirred cell at horizontal cathodes facing upward. Electrolyte composition ranged from 0·01 to 0·7 M CuSO4 in 1·5 M H2SO4. Cathode sizes varied from 0.1–30 by 10 cm, and the free height above the electrode from 1–16 cm. Limiting currents for deposition of copper ranged from 0·68–129 mA/cm2. For electrode width larger than 20 mm the data is well represented by the general correlation

Nu′ = 0.19 (Sc. Gr) , where Nu′, Sc, and Gr are the Nusselt number for mass transfer, the Schmidt, and Grashof numbers, respectively. The experimental range used in the correlation included 108 < (Sc. Gr) < 1·4 × 1012 The results indicate that the boundary layer is turbulent, as it is in the case of the analogous heat-transfer model.  相似文献   


11.
A. A. Wragg 《Electrochimica acta》1968,13(12):2159-2165
The free convection mass-transfer behaviour of upward-facing horizontal surfaces has been investigated experimentally using an electrochemical technique involving the measurement of limiting currents for the deposition of copper on copper electrodes from acidified cupric sulphate solutions. The data are well correlated by the equations

Sh = 0·64(Sc . Gr)0·25 for 3 × 104 < ScGr < 2·5 × 107 and

Sh = 0·16(Sc . Gr)0·33 for 2·5 × 107 < ScGr < 1012. Electrode diameters varied between 0·1 and 12 cm and cupric sulphate concentrations between 0·01 and 0·3 M.

The data compare favourably with previous experimental results for the corresponding heat-transfer case.  相似文献   


12.
Fengkui Li  Annik Perrenoud  Richard C. Larock   《Polymer》2001,42(26):10133-10145
New polymeric materials have been prepared from the cationic copolymerization of fish oil ethyl ester (NFO), conjugated fish oil ethyl ester (CFO) or triglyceride fish oil (TFO) with styrene and divinylbenzene initiated by boron trifluoride diethyl etherate (BF3·OEt2). These materials are typical thermosetting polymers with crosslink densities ranging from 1.1×102 to 2.5×103 mol/m3. The thermogravimetric analysis of the new fish oil polymers exhibits three distinct decomposition stages at 200–340, 340–500 and >500°C, respectively, with the maximum weight loss rate at approximately 450°C. Single glass-transition temperatures of Tg=30–109°C have been obtained for the fish oil polymers. As expected, these new polymeric materials exhibit tensile stress–strain behavior ranging from soft rubbers through ductile to relatively brittle plastics. The Young's modulus (E) of these materials varies from 2 to 870 MPa, the ultimate tensile strength (σb) varies from 0.4 to 42.6 MPa, and the percent elongation at break (εb) varies from 2 to 160%. The failure topography indicates typical fracture mechanisms of rigid thermosets, and the unique fibrillation on the fracture surface gives rise to relatively high mechanical properties for the corresponding NFO polymer. The new fish oil polymers not only exhibit thermophysical and mechanical properties comparable to petroleum-based rubbery materials and conventional plastics, but also possess more valuable properties, such as good damping and shape memory behavior, which most petroleum-based polymers do not possess, suggesting numerous, more promising applications of these novel fish oil-based polymeric materials.  相似文献   

13.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of tPEF = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40-60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity Deff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of Deff. For instance, 4 h of centrifugal OD permitted increasing the value of Deff from 0.93 · 10-9 to 3.85 · 10-9 m2/s for untreated carrots and from 1.17 · 10-9 to 5.10 · 10-9 m2/s for PEF-treated carrots.  相似文献   

14.
A constant of specific solubility of 2·5 × 10−8 g cm−2day−1 was determined for fused aluminosilicate particles, by observing in vivo retention kinetics after intravenous injection into rats. Studies over the past years in this laboratory, in which dogs and rats have inhaled labeled aerosols of these particles, have shown retention half-lives in the lung of 460 and 285 days, respectively. By applying these values for solubility and half-life to Mercer's theory of dissolution from the deep lung, the initial distribution of particles deposited in the pulmonary regions of dogs and rats following inhalation was calculated. From an inhaled aerosol with a mass median diameter, Dm, of 1·0 μm and σo = 1·7, a distribution described by Dm = 0·51 μm and σo's ranging from 1·16–1·48 was estimated to have been deposited in the Beagle dog lung. and a Dm =< 0·32 μm and σo's ranging from 1·18–1·29 was similarly calculated for rats.  相似文献   

15.
The kinetics of changes in the bound water content in dietetic sucrose-free sponge cakes (DC) during storage was investigated. The effect of edible films of polymyxan, pectin, xanthan, and carboxymethylcellulose upon this kinetics was also investigated. The quantitative changes in both states of water (slightly bound water and strongly bound water) were registered by combined dynamic analysis (thermogravimetry analysis, TGA, and differential thermal analysis, DTA). The moisture changes in DC crumb were analyzed by drying out to constant mass. The rate constants were determined according the equation q = qoe-kt. The values of rate constants 'k', in day-1, concerning the different edible films were as follows: for crumb moisture is (8.00 ≤ k ≤ 12.47) × 10-3, for bound water is (3.07 ≤ kw ≤ 6.26) × 10-2, for slightly bound water is (4.22 ≤ k1 ≤ 8.49) × 10-2 and for strongly bound water is (2.02 ≤ k2 ≤ 5.62) × 10-2 as compared to 18.53 × 10-3, 7.16 × 10-2, 9.04 × 10-2, and 5.36 × 10-2 in the uncovered DC, respectively. The best water-retaining effect in respect to crumb moisture during storage was ascertained in the use of polymyxan and xanthan films. The lowest rate constant values for bound water and its two states were measured for DC covered with pectin. The relation between the kinetics of both bound water states during storage and ageing of the crumb of DC covered with different edible films and the crumb microstructure was represented. By means of scanning electron microscope was read the smallest change in crumb microstructure of pectin-covered DC on the sixth day of storage.  相似文献   

16.
High absorptivity and turbidity interfere with the UV disinfection of apple cider. Three different configurations of flow-through UV reactors were evaluated to overcome this interference. Two approaches were employed: use of an extremely thin film UV reactor and increasing the turbulence within a UV reactor. Multiple-lamp UV reactors including the thin-film laminar flow “CiderSure” (8 lamps) and turbulent flow “Aquionics” (12 lamps) and annular single-lamp “UltraDynamics” reactor were studied. UV disinfection performance in laminar and turbulent flow reactors was compared by evaluation of UV dose delivery. UV fluence rate (irradiance) distribution was calculated using the multiple point source summation method. E. coli K12 was used as a target bacterium in a bioassay, and the log reduction per one pass was determined for each UV reactor. Finally, the UV decimal reduction dose (D10) was calculated by dividing the average UV fluence by log bacterial reduction per pass. Variations of the UV decimal dose were observed with various designs of UV systems. The least inactivation of E. coli K12 but the highest UV decimal reduction dose, ranging from 90 to 150 mJ/cm2, was observed in the Aquionics UV reactor in apple cider with apparent absorption coefficient (a) of 5.7 mm-1. The lower value of UV decimal reduction dose of 7.3-7.8 mJ/cm2 was required for inactivation of E. coli K12 in malate buffer and apple juice in the annular single-lamp UltraDynamics reactor. However, the decimal reduction dose for E. coli K12 in apple cider was significantly higher, about 20.4 mJ/cm2. Similar UV decimal reduction doses from 25.1 to 18.8 mJ/cm2 for inactivation of E. coli K12 were observed in the thin-film 'CiderSure' UV reactor in apple cider with identical absorption coefficient. Mathematical modeling of UV irradiance can improve the evaluation of UV dose delivery and distribution within the reactors.  相似文献   

17.
Effect of electrical ageing (EA) on the field emission parameters of thin multiwall carbon nanotube composite (t-MWCNTs-composite) was studied. Initially, t-MWCNTs were mixed with -terpineol and ethyl cellulose and subjected to three roll milling process to obtain t-MWCNTs-composite. Following this, the composite was screen printed on a conducting substrate, annealed for 10 min and employed to the electrical ageing process for a period of 6 h. The ageing, on each cathode layer, was repeated for five times and JE characteristics have been collected before and after each ageing attempt. The analysis revealed that, the magnitude of threshold turn-on-field gradually increased from its virgin value of 1.223 to 1.968 V µm− 1 and corresponding mean field enhancement factor, γm, gradually decreased from 2700 ± 210 to 1940 ± 30 with a sequential increase in the ageing attempts. The degradation rate, δJt, estimated for untreated and EA samples, indicated that the magnitude of δJt reached to an equilibrium value of ~ 0.785 μA cm− 2 min− 1, which shows a stable emission state of the emitters. To investigate the effect of EA on the physical state of the emitters, a few virgin and all EA samples were subjected to scanning electron microscopy, micro Raman spectroscopy and X-ray photoelectron spectroscopy. The details of the analysis are presented.  相似文献   

18.
Alumina reinforced by SiC whisker, called here “alumina(w)” was developed with the objective of improving fracture toughness and crack-healing ability. The composites were crack-healed at 1200 °C for 8 h in air under elevated static and cyclic stresses. The bending strength at 1200 °C of the crack-healed composites were investigated. The threshold static stress during crack-healing of alumina(w) has been determined to be 250 MPa, and the threshold cyclic stress was found to be 300 MPa. Considering that the crack growth is time-dependent, the threshold stress of every condition during crack-healing of alumina(w) was found to be 250 MPa. The results showed that the threshold stress intensity factor during crack-healing was 3.8 MPa m1/2. The same experiment conditions were applied to specimens cracked and annealed at 1300 °C for 1 h in Ar, to remove the tensile residual stress at a tip of the crack. Thus, the threshold stress intensity factor during crack-healing was found to be 3.2 MPa m1/2 for the specimens crack-healed with annealing. The threshold stress intensity factor during crack-healing of alumina(w) was chosen to be 3.2 MPa m1/2 to facilitate comparison with the values of the threshold stress intensity factor during crack-healing. The residual stress was slightly larger than the intrinsic value.  相似文献   

19.
A model is presented for drying of a single porous particle with superheated steam and humid air. Experimental data for spherical porous ceramic particle reported in the literature were used for the validation of the model. An inversion temperature at which the evaporation rates within superheated steam and humid air are equal was predicted. The effect of thermophysical properties of the particle (permeability 10-14 - 10-17 m2, diameter 3 × 10-3 - 10 × 10-3 m) and operating variables (gas mass flux 0.26 - 0.78 kg m-2 s-1, drying agent temperature 120-200°C) is tested. The inversion temperature is shown to be affected by the thermophysical properties of the porous particle and of the drying agent.  相似文献   

20.
In this paper, two parameters defined as the relative work of adhesion [WAL] and the relative interfacial energy [γSLL] have been examined for their assumed usefulness in correlating the thermodynamic properties of the components of the system substrate/ adhesive with its practical performance (strength). It is shown that the minimum value of [γSLL] relevant to conditions for the maximum adhesion becomes zero only for those systems (relatively rare) for which interaction factor Φ0 is equal to 1.0.

Several transition points were identified for boundary conditions acquired at θ = 0° and θ = 90° which can be used to predict the properties and performance of an adhesive joint. These transition points are: aMIN—energy modulus of the system (E. M. S.), relevant to the minimum interfacial energy; aS—E. M. S. where self-spreading of adhesive occurs; aCRIT—E. M. S. relevant to conditions under which the thermodynamic work of adhesion becomes negative and the system exhibits a tendency for self-delaminating or has “zero-strength”; aCF—E. M. S. beyond which the geometry of the interface at any interfacial void or boundary of the joint may be regarded as a crack tip.

It is shown that only in those systems for which Φ0 = 1.0 can a minimum contact angle of 0° indicate a condition for the maximum strength. If Φ0 is known, the optimum contact angle can be estimated and hence the optimum surface energy of the substrate (adjusted by surface treatment, etc.) for the maximum adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号