首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meristematic cells from root tips of Dahlia variabilis (L.) and highly vacuolated storage parenchyma cells of Helianthus tuberosus (L.) were fixed by the high-pressure freezing technique and freeze-substituted. A new water-free medium for freeze-substitution was developed to obtain better preservation of the ultrastructure of plant tissues. Adding dimethoxypropane (DMP) to the substitution medium gave two positive results: (1) water could be withdrawn from the samples without an exchange of the medium and without adding drying agents or working in a nitrogen atmosphere, and (2) the ultrastructural preservation of the substituted tissues was better than in a methanol medium and at least as good as in tissues fixed chemically at room temperature.  相似文献   

2.
A new microculturing technique for plant cells was used to meet the requirements of high-pressure freezing (HPF). The plant cells were cultured inside cellulose microcapillaries, providing an easy-to-handle method for a real in situ fixation. The high viability of the cells was demonstrated by regenerating shoots from microcalluses cultivated by this method. In general, the freezing quality of the high-pressure frozen samples was excellent across the whole diameter of the capillaries, as shown with ultrathin sectioned cells after freeze-substitution and embedding in Spurr's resin. In comparison with conventional chemically fixed cells, cultured under identical conditions, all membranous compartments and organelles were more turgid and smoother after HPF. The cytoplasm and the matrix of the organelles were more homogeneous and dense. Thus, high-pressure freezing in combination with the microculture method described here appears to preserve the ultrastructure of chemically untreated plant cells close to the native state.  相似文献   

3.
The performance of a commercial double-propane-jet freezer (Balzers QFD 101) has been assessed, for rapid freezing of fresh tissues in freeze-etch work. Samples of diaphragm muscle and intestinal villi were frozen between copper sheets, with a spacer to give 20–30μm thickness of tissue. Fracture cuts were made with the Balzers BAF 400 freeze-etch microtome within 5–10μm of a freezing face (i.e. a tissue face in contact with the copper sheets of the frozen sandwich). After some modifications to the QFD 101, replicas showing no evidence of ice were obtained of muscle cells, although for intestinal epithelial cells some evidence of ice formation was found. Infiltration with 5% glycerol or dimethylsulphoxide improves the depth of good freezing. Results and problems arising from such infiltration are briefly discussed.  相似文献   

4.
High-pressure freezing of tissue obtained by fine-needle biopsy   总被引:4,自引:0,他引:4  
High-pressure freezing (HPF) permits adequate cryoimmobilization (without detectable ice crystals after freeze-substitution) of biological tissue up to a thickness of about 200 μm. Until now the preparation of tissue prior to freezing has been unsatisfactory: sizing of the tissue to the required dimensions takes minutes, during which structural alterations must occur. We demonstrate that the use of a fine-needle biopsy technique minimizes tissue damage and guarantees sample dimensions close to the optimal thickness for HPF. The tissue cores can be cryoimmobilized within 40 s of excision.  相似文献   

5.
High‐pressure freezing avoids the artefacts induced by conventional chemical fixation, and, in combination with freeze‐substitution and plastic embedding, is a reliable method for the ultrastructural analysis of mammalian cell monolayers. In order to high‐pressure freeze mammalian cell monolayers, cells have to be seeded on a suitable substrate. Unfortunately, electron microscopy analysis is often hampered by poor cell growth, changes in cell morphology induced by the cell substrate or cell loss during processing. We report a method to culture, high‐pressure freeze, freeze‐substitute and plastic embed mammalian cell monolayers. The method is based on the use of Aclar, a copolymer film with properties very similar to those of tissue culture plastic. We show that Aclar discs support the normal growth and morphology of a wide variety of mammalian cell types, and form an ideal starting point for high‐pressure freezing, freeze‐substitution and plastic embedding. We present a complete protocol, which, because of its simplicity and reproducibility, provides a method suitable for the routine analysis of mammalian cell monolayers by electron microscopy and tomography.  相似文献   

6.
  总被引:3,自引:0,他引:3  
A microbiopsy system for fast excision and transfer of biological specimens from donor to high‐pressure freezer was developed. With a modified, commercially available, Promag 1.2 biopsy gun, tissue samples can be excised with a size small enough (0.6 mm × 1.2 mm × 0.3 mm) to be easily transferred into a newly designed specimen platelet. A self‐made transfer unit allows fast transfer of the specimen from the needle into the specimen platelet. The platelet is then fixed in a commercially available specimen holder of a high‐pressure freezing machine (EM PACT, Leica Microsystems, Vienna, Austria) and frozen therein. The time required by a well‐instructed (but not experienced) person to execute all steps is in the range of half a minute. This period is considered short enough to maintain the excised tissue pieces close to their native state. We show that a range of animal tissues (liver, brain, kidney and muscle) are well preserved. To prove the quality of freezing achieved with the system, we show vitrified ivy leaves high‐pressure frozen in the new specimen platelet.  相似文献   

7.
A new approach for cryofixation by high-pressure freezing   总被引:17,自引:0,他引:17  
A newly designed high-pressure freezing machine for cryofixation was established and tested (Leica EMPACT), based on ideas originally proposed by Moor & Riehle in 1968. The new machine, essentially an improved version of our prototype, pressurizes the sample to 2000 bar in a small container (using methylcyclohexane as hydraulic fluid) and at the same time cools the outer surface of the container with a jet of liquid nitrogen. The advantage of this approach is that the machine uses little liquid nitrogen and can be built small and light. The machine is able to vitrify and freeze well a variety of specimens, for example, plant leaves, yeast cells, liver or nerve tissue (more samples are shown at: http://www.ana.unibe.ch/empact ). Cooling efficiency is the same as in the traditional machines that use liquid nitrogen to pressurize and simultaneously cool the sample.  相似文献   

8.
We describe a method for high‐pressure freezing and rapid freeze‐substitution of cells in tissue culture which provides excellent preservation of membrane detail with negligible ice segregation artefacts. Cells grown on sapphire discs were placed ‘face to face’ without removal of tissue culture medium and frozen without the protection of aluminium planchettes. This reduction in thermal load of the sample/holder combination resulted in freezing of cells without visible ice‐crystal artefact. Freeze‐substitution at −90°C for 60 min in acetone containing 2% uranyl acetate, followed by warming to −50°C and embedding in Lowicryl HM20 gave consistent and clear membrane detail even when imaged without section contrasting. Preliminary data indicates that the high intrinsic contrast of samples prepared in this way will be valuable for tomographic studies. Immunolabelling sensitivity of sections of samples prepared by this rapid substitution technique was poor; however, reducing the uranyl acetate concentration in the substitution medium to 0.2% resulted in improved labelling. Samples substituted in this lower concentration of uranyl acetate also gave good membrane detail when imaged after section contrasting.  相似文献   

9.
Using in parallel electron microscopy of ultrathin frozen-hydrated sections and freeze-fracture replicas, we compare the ultrastructural consequences of two freezing techniques: slam-freezing at liquid helium temperature and high-pressure freezing, on a model system, the DNA cholesteric liquid crystalline phase. Both freezing techniques are able to vitrify DNA liquid crystalline solutions containing up to 85% water, but induce structural rearrangements of the molecular organization. The cholesteric structure is preserved by the slam-freezing method despite the formation of periodic distortions induced by the mechanical compressive stress. In contrast, high-pressure freezing does not preserve the structure of the liquid crystal: the long-range cholesteric stratification disappears, and the local continuous twist between molecules is modified. These results show that vitrification, though necessary, may not be a sufficient token of preservation of the native state of hydrated materials. We discuss the possible origins of the molecular rearrangements that have time to occur in the specimens as a result of the low freezing rate permitted by the high-pressure freezing process.  相似文献   

10.
Caenorhabditis elegans is one of the most important genetic systems used in current biological research. Increasingly, these genetics‐based research projects are including ultrastructural analyses in their attempts to understand the molecular basis for cell function. Here, we present and review state‐of‐the‐art methods for both ultrastructural analysis and immunogold localization in C. elegans. For the initial cryofixation, high‐pressure freezing is the method of choice, and in this article we describe two different strategies to prepare these nematode worms for rapid freezing. The first method takes advantage of transparent, porous cellulose capillary tubes to contain the worms, and the second packs the worms in E. coli and/or yeast paste prior to freezing. The latter method facilitates embedding of C. elegans in a thin layer of resin so individual worms can be staged, selected and precisely orientated for serial sectioning followed by immunolabelling or electron tomography.  相似文献   

11.
  总被引:1,自引:0,他引:1  
High‐pressure freezing is applicable to both morphological and immunocytochemical studies. We are investigating the morphogenesis of foot‐and‐mouth disease virus and African swine fever virus by the use of high‐pressure freezing of infected cells. Foot‐and‐mouth disease virus particles are not detected in sections of conventionally immersion‐fixed infected cells, but when the cells are prepared by high‐pressure freezing, newly formed virions are readily seen throughout the cell. We report two methods for high‐pressure freezing of virally infected cells: first, two sapphire discs frozen ‘face to face’ with a narrow spacer to prevent cell damage and, second, a fibrous filter substrate that can be easily cut into discs to fit into the freezing planchettes. Cells readily adhere to the fibres in vitro, and the complete disc can be rapidly transferred to the planchettes for freezing. Immunolabelling studies of the microneme proteins of the parasite Eimeria tenella indicate that high‐pressure freezing followed by freeze‐substitution in acetone with uranyl acetate allows high‐sensitivity immunolabelling for these proteins.  相似文献   

12.
The early Caenorhabditis elegans embryo is currently a popular model system to study centrosome assembly, kinetochore organization, spindle formation, and cellular polarization. Here, we present and review methods for routine electron microscopy and 3D analysis of the early C. elegans embryo. The first method uses laser‐induced chemical fixation to preserve the fine structure of isolated embryos. This approach takes advantage of time‐resolved fixation to arrest development at specific stages. The second method uses high‐pressure freezing of whole worms followed by freeze‐substitution (HPF‐FS) for ultrastructural analysis. This technique allows staging of developing early embryos within the worm uterus, and has the advantage of superior sample preservation required for high‐resolution 3D reconstruction. The third method uses a correlative approach to stage isolated, single embryos by light microscopy followed by HPF‐FS and electron tomography. This procedure combines the advantages of time‐resolved fixation and superior ultrastructural preservation by high‐pressure freezing and allows a higher throughput electron microscopic analysis. The advantages and disadvantages of these methods for different applications are discussed.  相似文献   

13.
Vital stains, moving in the transpiration stream in leaf apoplast, may be kept in place through freezing, freeze-substitution, embedding and sectioning, to reveal their position in the living plant. This technique has been used to study the details of movement of water out of the veins of leaves, and has wide application in histochemistry with water-labile dyes, and for following dye movements in protoplasm. Patterns of water movement in the leaf of Zea mays L. are presented as an example.  相似文献   

14.
In this paper, we review some published studies using correlative light and electron microscopy methods. We further refined our criteria to include only those studies using live cells for light microscope and where high-pressure freezing was the method of specimen preparation for electron microscopy. High-pressure freezing is especially important for some difficult-to-fix samples, and for optimal preservation of ultrastructure in samples larger than a few micrometres. How the light microscope observations are done is completely sample dependent, but the choice of high-pressure freezer depends on the speed required to capture (freeze) the biological event of interest. For events requiring high time resolution (in the 4–5 s range) the Leica EM PACT2 with rapid transfer system works well. For correlative work on structures of interest that are either non-motile or moving slowly (minutes rather than seconds), any make of high-pressure freezer will work. We also report on some efforts to improve the capabilities of the Leica EM PACT2 rapid transfer system.  相似文献   

15.
In comparison with other fixation methods, high-pressure freezing and freeze-substitution of Petunia ovules lead to improved ultrastructural preservation of all tissues. Crucial for adequate high-pressure freezing is the absence of air in the specimen sandwich; air has to be replaced by an embedding fluid. Frequently, 1-hexadecene is used for this purpose. Using 1-hexadecene as an embedding fluid resulted in only 5–10% of Petunia ovules being preserved without disturbance of the ultrastructure due to ice-crystal damage. Since 1-hexadecene is not soluble in acetone at − 90 °C, freeze-substitution is hindered when ovules remained completely surrounded by it; this results in recrystallization when the temperature is raised. We tested and compared the suitability of heptane and isooctane as embedding fluids for high-pressure freezing and freeze-substitution, reasoning that because of their low melting points and low relative densities, phase separation during freeze-substitution would result in complete exposure of the ovules to the substitution medium, leading to adequate freeze-substitution. Using either heptane or isooctane as an embedding fluid yielded up to 90% ice-crystal-free ovules. Both compounds, however, have some damaging effects on the outer one or two cell layers of the ovule, but not on the inner tissues.  相似文献   

16.
High‐pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding and final orientation for sectioning and subsequent transmission electron microscopy. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 μm, the tubing protects small and fragile samples within the thickness constraints of high‐pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography.  相似文献   

17.
We have developed a quick-freezing method, using a copper block cooled with liquid helium or nitrogen, which permits us to freeze muscles without any cryoprotectant at predetermined, precisely measured points in the recorded tension time-course of a single twitch or tetanus. Our aim is to arrest structural intermediates of the cross-bridge cycle for observation in the electron microscope. Chemically stimulated, demembranated muscles as well as electrically stimulated, live muscles can be frozen on the same apparatus. Good freezing of relaxed and contracting muscles has been obtained to a depth of 10–20 μm, with excellent structural preservation after freeze-substitution.  相似文献   

18.
Recent progress in freeze-fracturing of high-pressure frozen samples   总被引:1,自引:1,他引:1  
Pancreatic tissue, bacteria and lipid vesicles were high‐pressure frozen and freeze‐fractured. In addition to the normal holder, a new type of high‐pressure freezing holder was used that is particularly suitable for suspensions. This holder can take up an EM grid that has been dipped in the suspension and clamped in between two low‐mass copper platelets, as used for propane‐jet freezing. Both the standard and the new suspension holder allowed us to make cryo‐fractures without visible ice crystal damage. High‐pressure frozen rat pancreas tissue samples were cryo‐fractured and cryo‐sectioned with a new type diamond knife in the microtome of a freeze‐etching device. The bulk fracture faces and blockfaces were investigated in the frozen‐hydrated state by use of a cryo‐stage in an in‐lens SEM. Additional structures can be made visible by controlled sublimation of ice (‘etching’), leading to a better understanding of the three‐dimensional organization of organelles, such as the endoplasmic reticulum. With this approach, relevant biological structures can be investigated with a few nanometre resolution in a near life‐like state, preventing the artefacts associated with conventional fixation techniques.  相似文献   

19.
A new method based on the simultaneous action of Safranin and Alcian Blue (or green) is reported. The main advantages of this method are its simplicity and the absence of differentiation processes. Free-hand, frozen and paraffin sections can be stained with this technique. Sections are placed in 10% sodium hypochlorite for 1–5 min, rinsed in 5% acetic acid and stained for 10 min. Sections are then washed in distilled water for 1 min, rinsed in distilled water for 5 min and mounted.  相似文献   

20.
A method involving cryostat sectioning (10 μm thickness) and freeze-drying is presented for the preparation of plant tissue for microanalytical studies. The method is well suited for semi-quantitative imaging by secondary ion mass spectrometry (SIMS) and offers significant advantages over bulk freeze-dried or freeze-substitution preparations. Segments of corn or soybean root (5 mm) are quench-frozen, embedded externally, sectioned in a cryostat (10 μm), pressed onto ultrapure Si and slowly freeze-dried. Images of these sections with secondary electron microscopy and SIMS indicated good morphological preservation. It was possible to section tissues of a wide developmental range, as well as roots varying sixfold in diameter. SIMS images are presented which demonstrate the ability to detect and localize nutrient tracers, such as Rb+, following brief exposures (10 min) to the intact plant. Likewise, a toxic metal (Al) was localized in root tissue after brief exposure (<1 day) of the intact plant root to micromolar external concentrations. Elemental redistribution during processing was minimal, as demonstrated most explicitly by the lack of movement of loosely bound Ca from the outer cell walls into the adjacent embedding material. Preservation of compositional differences between cellular content and cell wall was supported by a semi-quantitative treatment of SIMS images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号