首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of steric hindrance on the attack of growing polymer radicals to the reaction sites on a trunk polymer was examined in the graft copolymerization of styrene onto a trunk polymer with pendant aromatic nitro groups by chain transfer reaction of growing polymer radicals to the pendant nitro groups. The nitro groups on ethylene-vinyl p-nitro benzoate copolymer (EVNB) are more effectively utilized in the graft copolymerization than those on the vinyl p-nitro benzoate homopolymer (PVNB) previously used as a trunk polymer, because the nitro groups are distributed less frequently on the trunk polymer in the former than in the latter. This was also confirmed by the higher chain transfer constant of growing polystyrene radicals to EVNB compared to that of PVNB.  相似文献   

2.
Graft polymerizations of acrylonitrile onto both a commercial larchwood hemicellulose and a purified (low lignin) wheat straw hemicellulose could be initiated by ceric ammonium nitrate. The resulting hemicellulose-g-polyacrylonitrile (PAN) copolymers were fractionated by extraction at room temperature with dimethylformamide and dimethylsulfoxide. Fractions were characterized by determining both the wt % PAN in each polymer fraction and the molecular weight of grafted PAN. Saponification of the PAN component of hemicellulose-g-PAN gave a water-dispersible graft copolymer with good thickening properties for water systems. An absorbent polymer, similar to the starch-based absorbents (Super Slurpers), was produced when saponified hemicellulose-g-PAN was isolated by methanol precipitation and then dried. Larchwood hemicellulose was also graft-polymerized with methyl acrylate using ceric ammonium nitrate initiation, and the hemicellulose-g-poly(methyl acrylate) was extrusion-processed into a tough, leathery plastic. Although ceric ammonium nitrate could be used as an initiator for graft polymerizations onto low-lignin hemicelluloses, it was inert with crude wheat straw hemicellulose containing 11% lignin. The ferrous sulfate–hydrogen peroxide redox system was used to initiate graft polymerizations onto this high-lignin material, and properties of the resulting hemicellulose-g-poly(methyl acrylate) and saponified hemicellulose-g-PAN graft copolymers were evaluated.  相似文献   

3.
Graft copolymers of acrylonitrile, ethyl acrylate, methyl acrylate, ethyl methacrylate and methyl methacrylate and of acrylonitrile/ethyl methacrylate and acrylonitrile/methyl methacrylate monomer mixtures on carboxymethylcellulose (degree of substitution 0.4–0.5) were prepared by use of ceric ion initiator in aqueous medium. The extent of graft polymer formation was measured in terms of graft level, molecular weight of grafted polymer chains and frequency of grafting as function of ceric ion concentration. It was found that at comparable reaction conditions, the molecular weight and frequency of grafting were not of the same order of magnitude. For the monomer mixtures, the copolymer compositions obtained from the total nitrogen content of the acrylonitrile/alkyl methacrylate copolymer samples showed that a relativity low amount of the acrylonitrile monomeric units were incorporated into the graft copolymer even at high acrylonitrile content of the feed.  相似文献   

4.
Styrene was grafted onto cellulose acetate p-nitrobenzoate (CANB) by chain transfer reaction of growing polymer radicals to the pendant nitro groups of CANB. A copolymer with a branch for every 17.2 nitro groups was obtained. This result indicates that the pendant aromatic nitro group is more effective in obtaining a graft copolymer by radical mechanism than pendant double bond on the trunk polymer previously reported, where graft copolymers with a branch for several hundred of double bonds are produced.  相似文献   

5.
Graft polymerizations of vinyl acetate onto granular corn starch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinylacetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. However, over half of the polymer was present as ungrafted poly-(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficiency. However, grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate-methyl methacrylate was carried out near 0°C, although conversion of monomers to polymer was low and grafted polymer contained 40-50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch–g–poly(vinyl acetate) to starch–g–poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch–g–poly(vinyl alcohol) in hot water was less than 50%; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized starch for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch–g–poly(vinyl acetate) with about 35% add-on, and a grafting efficiency of about 40% was obtained. A film cast from a starch–g–poly(vinyl alcohol) copolymer in which homopolymer was not removed exhibited a higher ultimate tensile strength than a comparable physical mixture of starch and poly(vinyl alcohol).  相似文献   

6.
A series of starch graft copolymers and one cellulose graft copolymer were prepared containing 40-50 percent synthetic polymer. The monomers used (styrene, methyl methacrylate, methyl acrylate, and butyl acrylate) were chosen to give grafted synthetic polymers with varying glass transition temperatures (Tg). These graft copolymers were extruded, in the absence of any added thermoplastic homopolymer, to give strong, continuous polysaccharide-filled plastics which are biodegradable and which exhibit little or no die swell. Properties of plastics varied with the Tg of the thermoplastic portion. Starch-g-polystyrene and starch-g-poly(methyl methacrylate) were hard and brittle, while graft copolymers prepared from methyl and butyl acrylate were more flexible and leathery. The graft Uopolymers with lower Tg grafts required less torque and could be extruded at lower temperatures. In the methyl acrylate series, a graft copolymer prepared from gelatinized starch was more easily extruded than one prepared from granular starch, and addition of water produced a water-filled extrudate of excellent quality. The surprising feature of these results is that the matrix polymers, starch and cellulose, are rigid, nonsoftening materials. Grafting of a thermoplastic polymer to these matrix polymers would not be expected to give an extrudable product. The results are explained as powder flow followed by fusion or sintering of the graft polymers under the temperature and pressure conditions in the die.  相似文献   

7.
An amphiphilic graft copolymer of polyacrylamide (PAM) with uniform poly(n‐octyl acrylate) (POA) grafts was synthesized by copolymerization of AM with POA macromer in solution using azobisisobutyronitrile as the initiator. The macromer was synthesized by free radical polymerization of octyl acrylate in the presence of different amounts of thioglycolic acid as the chain transfer agent, followed by termination with glycidyl methacrylate. The reactivity ratio and effects of copolymerization conditions on the conversion of macromer or grafting efficiency were studied. The crude products were purified by extraction with toluene and water successively. The purified graft copolymer was characterized by IR, DSC, and TEM. PAM‐g‐POA can bring about microphase separation and exhibits good emulsifying properties and water absorbency. PAM‐g‐POA exhibits a very good compatibilizing effect on the acrylic rubber/poly(vinyl chloride) blends. About 2–3% of the graft copolymer is enough for enhancing the tensile strength of the blends. The tensile strength of the blends is more than twice that without the compatibilizer. DSC and SEM demonstrated the enhancement of compatibility in the presence of the graft copolymer. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
The graft copolymerization of β-propiolactone (βPL) onto the various trunk polymers containing polar substituents such as pyridine, amide, sulfonyl chloride, and carboxylic acid anhydride groups was carried out. In the grafting onto the basic trunk polymer containing 4-vinylpyriding units, two kinds of grafting mechanism are supposed. In the case of rigorously dried trunk polymer, the polymerization is initiated by betaine and proceeds with higher grafting efficiency. Another is initiated by pyridinium hydroxide and proceeds with lower grafting efficiency. Another is initiated by pyridinium hydroxide and proceeds with lower grafting efficiency in the presence of some amount of water. With acidic trunk polymer containing sulfonyl chloride groups, no graft copolymer was produced. The grafting efficiency of βPL onto the amphoteric trunk polymer containing acrylamide units was found to be between those of basic and acidic trunk polymer. In addition, the grafting by means of ionic copolymerization of βPL with maleic anhydride units contained in trunk polymer proceeded with very high grafting efficiency.  相似文献   

9.
A graft copolymer composed of poly (2-hydroxy ethyl acrylate) (PHEA) as branched chains and chlorinated polyethylene (CPE) as backbone, CPE-cg-HEA, was synthesized by in situ chlorinating graft copolymerization (ISCGC). The polymer has special molecular structure with short graft chains and abundant branched points. The mechanical properties of CPE-cg-HEA were studied by tensile testing, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA). The morphologies of tensile fractured surfaces for CPE and CPE-cg-HEA were investigated by scanning electron microscope (SEM). The testing results indicated the mechanical properties of the in situ chlorinating graft copolymers have greatly improved compared with CPE with about the same chlorine content. Particularly, there was a broad plateau on the stress–strain curve of the graft copolymer, which meant a high elastic-like deformation.  相似文献   

10.
Crosslinked poly(N‐vinylpyrrolidone), preirradiated in air with γ rays, was grafted with ethyl acrylate in dioxane and water. A detailed study of grafting was made under various reaction conditions. The graft copolymer was treated with potassium hydroxamate in ethanol. The resulting polymer contained pendant hydroxamic acid groups ( CO NHOH) and was studied for the formation of complexes with Fe(III), Cu(II), and Ni(II). The effect of pH on the metal ion uptake by the polymer was also studied. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 475–483, 2000  相似文献   

11.
Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45;68% of the polystyrene formed was grafted to starch, and the corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and the plasticizing effects of water are summarized.  相似文献   

12.
A graft copolymer was synthesized by graft copolymerization of starch with styrene (St) and butyl acrylate (BA), using ferrous sulfate‐hydrogen peroxide redox initiation system. The starch was pregelled in the presence of acrylonitrile (AN) in aqueous alkali at high temperature before graft polymerization. Major factors affecting the polymerization reaction were investigated. It was found that a graft copolymer with higher percentage conversion (PC), graft efficiency (GE) and graft percentage (GP) was obtained by controlling the initiator concentration, concentration, and ratio of monomers and polymerization temperature. The optimum conditions were as follows: H2O2 concentration, 12%; monomer concentration, 120%; St/BA ratio, 1 : 1; polymerization temperature, 65°C. Fourier transform infrared spectroscopy and NMR analyses were used to gain information on the structure of the products. It was demonstrated that St, BA, and AN had been successfully grafted onto starch and ? CN had been saponified into ? CONH2 and ? COO? to a certain degree when pregelling. Scanning electron microscope micrographs showed the coarse structure and broad network. The graft polymerization took place on the surface of starch granule and led to amorphization of the starch structure. Graft polymer had better thermal stability and was endowed with pseudo‐plasticity. It was observed that the starch graft copolymer offers good properties such as water resistance as surface‐sizing agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Summary: The polymerizable nitroxide 4‐acryloyloxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl (AOTEMPO) was utilized in a two step polymerization to prepare alkoxyamine‐functionalized backbone polymers. These backbones were then used as initiators for stable free‐radical graft polymerizations in bulk at 125 °C. The products were cleaved into their linear components by reaction with L ‐(+)‐ascorbic acid allowing a reproducible analysis of the molecular weights. The influences of the backbone concentration and the graft density on the polymerization were investigated. Graft polymers purely consisting of styrene were produced as well as polymers with a backbone based on 2‐ethoxyethyl acrylate (EOEA). In addition a graft polymer with block copolymer side chains was prepared by extending a preformed graft polymer. In all cases the controlled course of the reaction was confirmed by the linear increase of the molecular weights over conversion and the low polydispersities of the products.

Structure of an extended graft copolymer.  相似文献   


14.
A starch graft poly(methyl acrylate) copolymer was developed having grafted side chains with molecular weight of less than 500,000. This material can be easily extruded into a film which shows excellent initial tensile strength and elongation. Tensile strength, however, falls off rapidly after 70 hr of water immersion at 25°C. Starch graft poly(methyl acrylate) films show excellent susceptibility to fungal growth, some samples losing more than 40% of their weight after 22 days of incubation with Aspergillus niger. Tensile tests and scanning electron micrographs of the incubated samples, after being freed of mycelium, indicate substantial biodegradation of the starch portion of the copolymer. This material may have application as a biodegradable plastic mulch.  相似文献   

15.
Styrene (St) was polymerized in the presence of poly(p-nitrophenyl acrylate) (PNPA) with azobisisobutyronitrile as an initiator to prepare graft copolymers through the chain transfer reaction of growing polystyrene (PSt) radicals to the aromatic nitro groups on PNPA. The maximum number of branches attained was 16.4 (P n of PNPA was 1780), which corresponds to 108 monomer units per PSt branch. This is far less than the value of 43, previously obtained for poly(vinyl p-nitrobenzoate) as a trunk polymer. Therefore, several model compounds for trunk polymers were prepared, and the chain transfer constants of PSt radicals to these model compounds were determined. As a result of the Hammett plot, it is concluded that higher electron attracting property of the substituents increases the reactivity of nitro groups to the growing PSt radicals, resulting in more highly branched graft copolymers.  相似文献   

16.
This investigation reports the preparation and self-assembly behavior of polyhedral oligomeric silsesquioxane (POSS) containing poly(caprolactone)-graft-poly(acrylic acid) (POSS-PCL-graft-PAA) polymer. This article focuses on the self-assembly behavior of POSS tethered amphiphilic graft copolymer. In this investigation, POSS tethered alkyne functionalized polycaprolactone (PCL) was prepared by strategic ring opening polymerization (ROP) of ε-caprolactone and α-propargyl-ε-caprolactone using hydroxyl-terminated POSS as an initiator. Azide-terminated poly(tert-butyl acrylate) (P t BA) was grafted onto functional PCL via Cu-catalyzed azide-alkyne “click” (CuAAC) reaction. Finally, hydrolysis of the tert-butyl ester group into acid furnished the POSS tethered PCL-graft-PAA polymer. This amphiphilic graft copolymer was characterized by GPC, NMR, and FT-IR analyses and the morphology of the graft copolymer analyzed by HRTEM and FESEM analyses. On changing the graft copolymer concentration (low to high) in water, the morphology of the final graft copolymer changed from micelles to worm-like and core-shell. The structural motif of POSS plays an important role in this morphological transformation. The pH sensitivity was studied using DLS analysis as well as via release profile of rhodamine B as a model compound.  相似文献   

17.
《Polymer》1995,36(6):1269-1273
The core—shell graft copolymer of α-methyl styrene with acrylonitrile on poly(butyl acrylate) was synthesized. The graft polymerization was investigated as a function of reaction temperature, initiator concentration used in the secondary polymerization, monomer to polymer ratio and emulsifier concentration. The compatibility of this core—shell graft copolymer with poly(vinyl chloride) (PVC) was determined by the solubility parameter method and scanning electron microscopy. The mechanical and rheological behaviour of the blend show that this core—shell graft copolymer can be used as a processing aid for PVC.  相似文献   

18.
Bis(1H, 1H, 2H, 2H‐perfluoro‐octyl)methylenesuccinate (FOM)/ethyl acrylate (EA)/methyl methacrylate (MMA) copolymer (FOME) latexes, FOM/butyl acrylate (BA)/MMA copolymer (FOMB) latexes, and FOM/octyl acrylate (OA)/MMA copolymer (FOMO) latexes were synthesized by continuous emulsion polymerization. Solution polymerization was also carried out to prepare FOMB. The influences of fluorine content and curing conditions on the surface properties of polymer films were discussed. The water and oil repellency of cotton fabrics treated with the FOM copolymers was better than that of conventional poly(fluoroalkyl acrylate)s containing the same fluorinated chain. The polymer films or the treated fabrics were characterized by Fourier transform infrared, scanning electron microscope, atomic force microscopy, thermogravimetric analysis, x‐ray photoelectron spectrometry, and wide angle x‐ray diffraction. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci, 2013  相似文献   

19.
The separation of a chlorinated hydrocarbon from a dilute aqueous solution through a crosslinked acrylate copolymer–porous substrate composite membrane by pervaporation was investigated. Poly(n‐butyl acrylate‐co‐acrylic acid) and poly(n‐butyl acrylate‐co‐2‐hydroxyethyl acrylate) were synthesized and composite membranes were prepared, which were made from the crosslinked polymer and a porous substrate. Pervaporation measurement was carried out for a dilute aqueous solution of 1,1,2‐trichloroethane at 25°C and under a vacuum on the permeate side (below 10 mmHg). The separation factor, overall flux, 1,1,2‐trichloroethane concentration in the membrane, and the degree of swelling decreased with increase in the acrylic acid or 2‐hydroxyethyl acrylate content of the acrylate copolymer. The influence of the crosslinking agent content on the pervaporation performance was small, and the separation factor and the overall flux showed a convex curve. The structure of the crosslinking agent had no effect on the separation. The influence of the pore size of the substrate and the thickness of the polymer layer on the separation of 1,1,2‐trichloroethane was observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 983–994, 1999  相似文献   

20.
Novel self-crosslinkable graft copolymers with complementary reactive groups, that is, a pendant blocked isocyanate in the first segment and a hydroxyl group in the second segment, were developed. In order to incorporate isocyanate functionality, m-isopenyl-,-dimethyl benzyl isocyanate (TMI) was (copolymerized with n-butyl acrylate (nBA) by radical polymerization in solution. Subsequently, a part of the isocyanate was reacted with 2-hydroxyethyl acrylate (HEA) in order to incorporate a polymerizable double bond into the copolymer molecule. After blocking the remaining isocyanate groups with methyl ethyl ketone (MEK) oxime, the polymerizable prepolymer was copolymerized with methacrylates, including hydroxyl monomers, to form the graft copolymer. Another process of preparing the graft polymer was also carried out; TMI/nBA copolymer was reacted with MEK oxime to block about 70% of isocyanate groups, then poly(ol)polymer such as poly(ester)resin was added. After the grafting reaction was completed, remaining NCOs were blocked by MEK oxime. Furthermore, by incorporating neutralizable functionalities such as carboxyl or tertiary amino groups to the second segment of the graft copolymer, self-dispersible (self-stabilized) aqueous coating vehicles were prepared. MEK oxime blocked tertiary isocyanate from TMI in the present graft polymers exhibits fairly lower deblocking temperature comparing to the similar products derived from IBM (isocyanatoethyl methacrylate) or isophorone diisocyanate-hydroxyethyl acrylate (IPDI-HEA) adduct, and hence it is possible to produce coatings curable at a lower temperature (100–120 °C) while retaining satisfactory storage stability. Owing to this curability the coatings are applicable to the products made of plastics such as components of automotives etc. Possible application to waterborne coatings is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号