首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the development of a homologous in vitro assay system for analysing translocation of proteins across the endoplasmic reticulum (ER) membrane of the fission yeast Schizosaccharomyces pombe. Our protocol for preparing an S. pombe extract capable of translating natural messenger RNAs was modified from a procedure previously used for Saccharomyces cerevisiae, in which cells are lysed in a bead-beater. However, we were unable to prepare fission yeast microsomes active in protein translocation using existing budding yeast protocols. Instead, our most efficient preparations were isolated by fractionating spheroplasts, followed by extensive washing and size exclusion chromatography of the crude membranes. Translocation of two ER-targeted proteins, pre-acid phosphatase from S. pombe and prepro-α-factor from S. cerevisiae, was monitored using two distinct assays. First, evidence that a fraction of both proteins was sequestered within membrane-enclosed vesicles was provided by resistance to exogenously added protease. Second, the protected fraction of each protein was converted to a higher molecular weight, glycosylated form; attachment of carbohydrate to the translocated proteins was confirmed by their ability to bind Concanavalin A–Sepharose. Finally, we examined whether proteins could be translocated across fission yeast microsomal membranes after their synthesis was complete. Our results indicate that S. cerevisiae prepro-α-factor can be post-translationally imported into the fission yeast ER, while S. pombe pre-acid phosphatase crosses the membrane only by a co-translational mechanism.  相似文献   

2.
The effect of phleomycin, a bleomycin-like antibiotic, has been investigated in the fission yeast, Schizosaccharomyces pombe. We report that in response to phleomycin-induced DNA damage, growth was inhibited and S. pombe cells arrested in the G2-phase of the cell cycle. DNA repair mutants rad9 and rad17 did not arrest and were hypersensitive to phleomycin. Cell cycle mutants that entered mitosis without monitoring the completion of DNA replication also displayed an increased sensitivity to this DNA-damaging agent. Thus, phleomycin could be used as a tool in the fission yeast S. pombe model system for the study of DNA damage and cell cycle checkpoints, or as a new selective agent.  相似文献   

3.
4.
5.
The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature‐sensitive fission yeast strains, rrs1‐D14/22G and rrs1‐L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1‐84 (D22/30G) and rrs1‐124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two‐hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Fission yeast is a powerful model organism that has provided insights into important cellular processes thanks to the ease of its genome editing by homologous recombination. However, creation of strains with a large number of targeted mutations or containing plasmids has been challenging because only a very small number of selection markers is available in Schizosaccharomyces pombe. In this paper, we identify two fission yeast fluoride exporter channels (Fex1p and Fex2p) and describe the development of a new strategy using Fex1p as a selection marker for transformants in rich media supplemented with fluoride. To our knowledge this is the first positive selection marker identified in S. pombe that does not use auxotrophy or drug resistance and that can be used for plasmids transformation or genomic integration in rich media. We illustrate the application of our new marker by significantly accelerating the protocol for genome edition using CRISPR/Cas9 in S. pombe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of fundamental questions in eukaryotic cell and molecular biology. A plethora of cellular processes are membrane associated and/or dependent on the proper functioning of cellular membranes. Phospholipids are not only the basic building blocks of cellular membranes; they also serve as precursors to numerous signaling molecules. In this review, we describe the biosynthetic pathways leading to major S. pombe phospholipids, how these pathways are regulated, and what is known about degradation and turnover of fission yeast phospholipids. This review also addresses the synthesis, regulation and the role of water-soluble phospholipid precursors. The last chapter of the review is devoted to the use of S. pombe for the biotechnological production of value-added lipid molecules.  相似文献   

8.
Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+/H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
L ‐Azetidine‐2‐carboxylic acid (AZC) is a toxic four‐membered ring analogue of L ‐proline that is transported into cells by proline transporters. AZC and L ‐proline in the cells are competitively incorporated into nascent proteins. When AZC is present in a minimum medium, misfolded proteins are synthesized in the cells, thereby inhibiting cell growth. The MPR1 gene has been isolated from the budding yeast Saccharomyces cerevisiae Σ1278b as a multicopy suppressor of AZC‐induced growth inhibition. MPR1 encodes a novel acetyltransferase that detoxifies AZC via N‐acetylation. Since MPR1 is absent in the laboratory strain of S. cerevisiae S288C, it could be a positive selection marker that confers AZC resistance in the S288C background strains. To examine the usefulness of MPR1, we constructed some plasmid vectors that harboured MPR1 under the control of various promoters and introduced them into the S288C‐derived strains. The expression of MPR1 conferred AZC resistance that was largely dependent on the expression level of MPR1. In an additional experiment, the galactose‐inducible MPR1 and ppr1+, the fission yeast Schizosaccharomyces pombe homologue of MPR1, were used for gene disruption by homologous recombination, and here AZC‐resistant colonies were also successfully selected. We concluded that our MPR1–AZC system provides a powerful tool for yeast transformation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis of mevalonate, a molecule required for both sterol and isoprene biosynthesis in eukaryotes, is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Using a gene dosage approach, we have isolated the gene encoding HMG-CoA reductase, hmg1+, from the fission yeast Schizosaccharomyces pombe (Accession Number L76979). Specifically, hmg1+ was isolated on the basis of its ability to confer resistance to lovastatin, a competitive inhibitor of HMG-CoA reductase. Gene disruption analysis showed that hmg1+ was an essential gene. This result provided evidence that, unlike Saccharomyces cerevisiae, S. pombe contained only a single functional HMG-CoA reductase gene. The presence of a single HMG-CoA reductase gene was confirmed by genomic hybridization analysis. As observed for the S. cerevisiae HMG1p, the hmg1+ protein induced membrane proliferations known as karmellae. A previously undescribed ‘feed-forward’ regulation was observed in which elevated levels of HMG-CoA synthase, the enzyme catalysing the synthesis of the HMG-CoA reductase substrate, induced elevated levels of hmg1+ protein in the cell and conferred partial resistance to lovastatin. The amino acid sequences of yeast and human HMG-CoA reductase were highly divergent in the membrane domains, but were extensively conserved in the catalytic domains. We tested whether the gene duplication that produced the two functional genes in S. cerevisiae occurred before or after S. pombe and S. cerevisiae diverged by comparing the log likelihoods of trees specified by these hypotheses. We found that the tree specifying post-divergence duplication had significantly higher likelihood. Moreover, phylogenetic analyses of available HMG-CoA reductase sequences also suggested that the lineages of S. pombe and S. cerevisiae diverged approximately 420 million years ago but that the duplication event that produced two HMG-CoA reductase genes in the budding yeast occurred only approximately 56 million years ago. To date, S. pombe is the only unicellular eukaryote that has been found to contain a single HMG-CoA reductase gene. Consequently, S. pombe may provide important opportunities to study aspects of the regulation of sterol biosynthesis that have been difficult to address in other organisms and serve as a test organism to identify novel therapies for modulating cholesterol synthesis.  相似文献   

11.
We have cloned and sequenced the hcs gene, which is thought to encode a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase consisting of 447 amino acids, from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence of the hcs product of S. pombe has homology with the HMG-CoA synthase of rat (47·8%), chicken (49·2%), hamster (47·1%) and human cells (46·9%). One of the hcs genes was replaced with a marker gene in the diploid cell. No viable hcs-disrupted haploid was isolated after tetrad dissection, suggesting that the hcs gene is essential for growth. However the hcs-defective mutant could be grown on a medium containing 5 mg/ml mevalonate. These results strongly support that the hcs gene encodes HMG-CoA synthase and S. pombe contains a single copy of the hcs gene. The sequence of the hcs gene has been entered into the public data libraries under Accession Number U32187.  相似文献   

12.
Although there have been several reports demonstrating the existence of mating factors in the fission yeast Schizosaccharomyces pombe it has not been possible to isolate these factors as cell-free preparations. Such an ability is the first requirement towards a molecular characterization of these factors and here I report the successful isolation of a mating factor from S. pombe. This factor, termed M-factor, is released by cells of the cellular mating type M (Minus) and induces mating-specific changes in P-type cells. A reliable and accurate assay for the quantitation of the M-factor, based upon changes in cell volume following exposure to the factor, is also described.  相似文献   

13.
Vacuolar carboxypeptidase Y of Saccharomyces cerevisiae (CPYsc) has been expressed in a Schizosaccharomyces pombe strain devoid of the endogenous equivalent peptidase, employing a 2 μ derived plasmid. Immunoblot analysis revealed that CPYsc produced in the fission yeast has a higher molecular mass than mature CPYsc produced by the budding yeast. CPYsc is glycosylated when expressed in S. pombe and uses four N-linked glycosylation sites as shown by endoglycosidase H digestion. Carbohydrate removal leads to a protein moiety which is indistinguishable in size from deglycosylated CPYsc produced by S. cerevisiae. CPYsc isolated from S. pombe soluble extracts is enzymatically active and thus is presumed to undergo correct proteolytic maturation. Subcellular fractionation experiments showed a cofractionation of CPYsc with the S. pombe endoproteinases PrA and PrB, suggesting that the protein is correctly sorted to the vacuole and that these peptidases might be responsible for zymogen activation.  相似文献   

14.
We have isolated and sequenced the ptb1 gene from the fission yeast Schizosaccharomyces pombe. Sequence analysis suggests that Ptb1 is the β subunit of the type-II geranylgeranyltransferase that is responsible for geranylgeranylation of the Rab-like YPT proteins in this yeast. The sequence has been deposited in the EMBL data library under the Accession Number X92183.  相似文献   

15.
We searched for fission yeast (Schizosaccharomyces pombe) proteins that preferentially bind to a synthetic curved DNA sequence, by means of a DNA-binding gel shift assay in the presence of an excess amount of a non-curved DNA sequence as a competitor. We identified such a protein in S. pombe. The protein, thus purified, has an apparent molecular weight of 42 000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was suggested that this protein (42 K-protein) recognizes and binds to a curved DNA structure in a given nucleotide sequence, although it also binds to a non-curved DNA sequence with lower affinity. As its putative coding sequence, a 1·9-kilobase genomic DNA from S. pombe was cloned and sequenced. Sequencing of a cDNA clone also revealed the existence of an open reading frame, with no intron, encoding a 381-amino-acid protein with a calculated molecular mass, 41 597. This protein appears to be located in the nucleus. The predicted protein sequence revealed that the 42 K-protein exhibits no significant similarity to any other known proteins, except to a hypothetical protein of Caenorhabditis elegans.  相似文献   

16.
The fission yeast Schizosaccharomyces pombe homologue of the p40/eIF3h subunit of mammalian translation initiation factor eIF3 has been characterized in this study. We show that this protein physically associates with the 40S ribosomal particles as a constituent of the multimeric eIF3 protein complex, which consists of all five known eIF3 core subunits (eIF3a, eIF3b, eIF3c, eIF3g and eIF3i) as well as the five non‐core subunits (eIF3d, eIF3e, eIF3f, eIF3h and eIF3m) that constitute an eIF3 holocomplex in fission yeast. However, affinity purification of eIF3 from fission yeast cells expressing TAP‐tagged eIF3h suggests the presence of distinct forms of eIF3 that differ in their composition of the non‐core subunits. Further characterization of eIF3h shows that strains lacking eif3h+ (eif3hΔ) are viable and show no gross defects, either in vegetative growth or in the rate of in vivo protein synthesis. Polysome profile analysis shows no apparent defects in translation initiation. Furthermore, deletion of eif3h+ does not affect the ability of the other eIF3 subunits to remain associated with one another in a tight protein complex similar to the situation in wild‐type cells. Additionally, we show that human eIF3h can functionally substitute fission yeast eIF3h in complementing in vivo a genetic deletion of eif3h+. Interestingly, mutant eif3hΔ cells show several prominent phenotypic properties. They are hypersensitive to caffeine and highly defective in meiosis, producing either no spores or incomplete tetrads with a very high frequency. The implications of these results in relation to the functions of eIF3h in Sz. pombe are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose–response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on β‐estradiol‐regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3EV, turns on quickly, can reach a maximal induction of 20‐fold, and exhibits a linear dose response over its entire induction range, with few off‐target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by β‐estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome‐wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super‐resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Characterization of cdk (c yclin d ependent k inases) substrates and studies of their regulation require purified enzymatic complexes of cdc2-related catalytic and cyclin regulatory subunits. We produced human Cdc2 kinase in the fission yeast Schizosaccharomyces pombe as a fusion protein with glutathione S-transferase (GST). The GST-human Cdc2p fusion protein was active in vivo since it rescued a temperature-sensitive allele of cdc2. The fusion protein was purified using a one-step chromatography procedure with glutathione–Sepharose and exhibited a catalytic activity in vitro. Yeast cyclin B and suc1 were found in association with GST-Cdc2. A 17-fold stimulation of GST-Cdc2 kinase activity was obtained by incubation of recombinant human cyclin A with the S. pombe cellular extract prior to affinity purification. This indicates that cyclin concentration is limiting in this overexpression system. These findings describe a fast and easy production of active recombinant human Cdc2 kinase in yeast that can be used for biochemical studies.  相似文献   

20.
RNase MRP and RNase P ribonucleoproteins are structurally and functionally similar across a large evolutionary distance. To better characterize possible complex interrelationships between these two enzymes, we have employed the fission yeast Schizosaccharomyces pombe. Unlike Saccharomyces cerevisiae, S. pombe is believed to harbour only one genetic locus for the RNA component of RNase P and does not contain a known mitochondrially encoded RNase P RNA. We have identified the single nuclear gene for the RNA component of RNase MRP in S. pombe, mrp-1, by homology to vertebrate RNase MRP RNAs. The mrp-1 gene encodes an RNA of maximum mature length 400 nucleotides that shares a high degree of identity, in evolutionarily conserved regions, to both vertebrate RNase MRP RNAs and S. pombe RNase P RNA. Disruption of mrp-1 in the diploid strain SP826 and sporulation of tetrads resulted in a 2 dead:2 viable segregation, consistent with the gene being essential. Lethality is rescued by a plasmid-borne copy of mrp-1. Partially purified ribonucleoprotein RNase MRP activity correctly and efficiently processed all previously characterized heterologous mitochondrial RNA substrates. The compact mitochondrial genome of S. pombe contains sequence elements with >50% identity to mammalian D-loop CSBI and CSBII elements. The identification of mrp-1 in S. pombe should facilitate not only comparisons between the related ribonucleoproteins RNase MRP and RNase P, but should also provide an opportunity for genetic elucidation of RNase MRP function in a situation reflective of the animal kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号