共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
为了较好克服量子粒子群算法存在早熟收敛的缺点,在分析算法参数和流程的基础上,提出了一种带变异操作的改进量子粒子群优化算法。针对传统BP算法易于陷入局部极小的不足,将改进的算法应用到BP神经网络的学习过程中,修正BP网络的权值和阈值,提高其收敛性能。并将优化的BP神经网络模型应用于入侵检测中,用标准入侵检测数据对基于不同算法的BP网络进行仿真实验比较。实验结果表明,改进后的BP算法迭代次数少,收敛速度有所提高,在一定程度上提高了入侵检测率。 相似文献
3.
基于QPSO训练支持向量机的网络入侵检测 总被引:1,自引:0,他引:1
对于大规模入侵检测问题,分解算法是训练支持向量机的主要方法之一.在结构风险最小化的情况下,利用改进后的蚁群算法(QPSO)解决二次规划问题(QP),寻找最优解,并对 ArraySVM 算法进行了改进,同时对KDD入侵检测数据进行了检测.结果表明,算法精确度高于改进前的 ArraySVM 算法,并且减少了支持向量点数量. 相似文献
4.
为了提高网络入侵检测的准确性与检测效率,弥补由单一优化算法带来的计算精度低、易陷入局部极值等不足,将差分算法的思想引入量子粒子群算法中,提出了一种改进量子粒子群算法(Improved Quantum Particle Swarm Optimization algorithm,IQPSO)和改进差分算法(Improved Difference Evolution,IDE)相融合的IQPSO-IDE算法,并将IQPSO-IDE算法对支持向量机(Support Vector Machine,SVM)的参数进行优化。以此为基础,设计了一种基于IQPSO-IDE算法的网络入侵检测方法。实验结果表明,IQPSO-IDE算法与传统的QPSO、GA-DE、QPSO-DE算法相比,不仅在效率上有了明显的改善,而且在网络入侵检测的正确率上分别提高了5.12%、3.05%、2.26%,在误报率上分别降低了3.31%、1.54%、0.93%,在漏报率上分别降低了1.26%、0.73%、0.52%。 相似文献
5.
提出基于量子粒子群的投影寻踪聚类算法,该算法将量子粒子群的全局搜索能力与投影寻踪对高维数据的降维能力相结合,有效解决了高维数据聚类计算量大效率低的问题。并将该算法应用于三种不同的测试数据,仿真实验结果表明该算法具有更好的效率,且提高了聚类效果,是解决高维聚类问题的一种有效方法。 相似文献
6.
为了较好克服量子粒子群算法存在早熟收敛的缺点,在分析算法参数和流程的基础上,提出了一种带变异操作的改进量子粒子群优化算法。针对传统BP算法易于陷入局部极小的不足,将改进的算法应用到BP神经网络的学习过程中,修正BP网络的权值和阈值,提高其收敛性能。并将优化的BP神经网络模型应用于入侵检测中,用标准入侵检测数据对基于不同算法的BP网络进行仿真实验比较。实验结果表明,改进后的BP算法迭代次数少,收敛速度有所提高,在一定程度上提高了入侵检测率。 相似文献
7.
粒子群算法在投影寻踪模型优化求解中的应用 总被引:5,自引:0,他引:5
粒子群优化(Particle Swarm Optimization,PSO)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论.PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成问题的优化.针对投影寻踪模型中的最佳投影方向优化问题.运用PSO算法和惩罚函数法相结合对该优化问题进行了计算.仿真实验结果表明:PSO算法对于求解有复杂约束的非线性目标函数优化问题是可行的,且算法的收敛速度快,编程结构简单,易于实现,从而为各领域运用投影寻踪模型评价方法提供了强有力的寻优方法,具有较广的应用前景. 相似文献
8.
遗传-粒子群的投影寻踪模型 总被引:2,自引:0,他引:2
以前的投影寻踪研究都是采用遗传算法来寻找最优的投影方向,但遗传算法对初始种群的选择有一定的依赖性,收敛速度较慢,而且得到的也未必是最优解。粒子群算法是一种模拟鸟群飞行觅食的行为,通过个体之间的协作来寻找最优解的进化计算技术。根据遗传算法和粒子群算法的优缺点,将两者有效地结合在一起,提出了遗传-粒子群的投影寻踪模型。该方法能有效地解决投影寻踪模型中投影方向的寻优问题,并将该方法应用于文本分类,在Reuters-21578文档集上分别采用KNN和朴素贝叶斯方法进行实验,结果表明此方法能有效提取投影方向,取得了满意的分类效果,也提高了算法收敛到最优解的能力。 相似文献
9.
针对粒子群算法容易陷入局部最优解,将遗传算法的交叉和变异引入到粒子群算法中。根据不同的收敛情况及交叉和变异的特点使用两种算子,提出一种既能预防陷入局部最优解又能跳出局部最优解的混合粒子群算法,将该算法应用到投影寻踪动态聚类模型中来优化投影方向,得到近似最好的投影寻踪动态聚类模型。实验证明,相对于原始粒子群算法,该方法可以有效地避免陷入局部最优解,而且投影效果也更好。 相似文献
10.
基于QPSO方法优化求解TSP 总被引:14,自引:0,他引:14
针对粒子群优化算法PSO求解旅行商问题TSP收敛速度不够快的缺陷,提出利用量子粒子群优化算法QPSO求解TSP,在交换子和交换序概念的基础上,以Matlab语言为开发工具实现了TSP最佳路径的求解.实验表明改造QPSO算法用于优化求解14点的TSP,能够迅速得到最优解,收敛速度加快,搜索效率得到较大水平提高;QPSO方法在求解组合优化问题中将非常有效. 相似文献
11.
提出了一种将量子粒子群优化算法和半监督模糊核聚类算法相结合的混合算法,用以解决入侵检测算法中模糊聚类算法对初始值敏感,容易陷入局部最优的问题。该算法对少量标记数据进行监督聚类得到正确模型,运用这个模型指导大量未标记数据进行聚类,扩充标记数据集合,对仍没有确定标记的数据利用量子粒子群优化的模糊核聚类算法进行聚类,确定其标记类型。通过KDD CUP99实验数据的仿真,实验结果表明,该算法在入侵检测中能获得理想的检测率和误检率。 相似文献
12.
13.
针对当前网络入侵检测中的数据量较大、数据维度较高的特点,将飞蛾扑火优化(MFO)算法应用于网络入侵检测的特征选择中。鉴于MFO算法收敛过快、易陷入局部最优的问题,提出一种融合粒子群优化(PSO)的二进制飞蛾扑火优化(BPMFO)算法。该算法引入MFO螺旋飞行公式,具有较强的局部搜索能力;结合了粒子群优化(PSO)算法的速度更新方法,让种群个体随着全局最优解和历史最优解的方向移动,增强算法的全局收敛性,从而避免易陷入局部最优。仿真实验以KDD CUP 99数据集为实验基础,分别采用支持向量机(SVM)、K最近邻(KNN)算法和朴素贝叶斯(NBC)3种分类器,与二进制飞蛾扑火优化(BMFO)算法、二进制粒子群优化(BPSO)算法、二进制遗传算法(BGA)、二进制灰狼优化(BGWO)算法和二进制布谷鸟搜索(BCS)算法进行了实验对比。实验结果表明,BPMFO算法应用于网络入侵检测的特征选择时,在算法精度、运行效率、稳定性、收敛速度以及跳出局部最优的综合性能上具有明显优势。 相似文献
14.
针对网络入侵检测模型自适应能力不足的问题,将麻雀搜索算法(SSA)中的大范围快速搜索能力引入到粒子群优化(PSO)算法,提出基于麻雀搜索算法的改进粒子群优化(SSAPSO)算法。该算法通过对轻量级梯度提升机(LightGBM)算法中难以整定的参数进行寻优,使PSO算法在保证寻优精度的同时快速收敛,并得到最优的网络入侵检测模型。仿真实验结果表明,在4种基准函数上,SSAPSO比基本PSO算法收敛速度更快;在KDDCUP99数据集上,SSAPSO优化LightGBM后得到的SSAPSO-LightGBM算法比分类特征和梯度提升(CatBoost)算法的准确率、召回率、精确率和F1指数分别提升了15.12%、3.25%、21.26%和12.25%;SSAPSO-LightGBM算法在上述数据集中正常流量(Normal)、未授权远程访问(R2L)攻击、未授权本地访问(U2R)攻击、监听(PROBE)攻击的检测准确率比LightGBM算法分别提升了0.61%、3.14%、4.24%、1.04%和5.03%。 相似文献
15.
提出一种基于KQPSO聚类算法的网络异常检测模型.该模型利用K-Means聚类算法的结果重新初始化粒子群,聚类过程都是根据数据间的Euclidean(欧几里德)距离。再通过量子粒子群优化算法(QPSO)寻找聚类中心。最后进行仿真模拟,实验结果表明,该模型对网络异常检测是有效的。 相似文献
16.
网络流量预测对于大规模网络的规划设计和网络资源管理等方面都具有积极的意义,是网络流量工程重要组成部分。结合QPSO算法和BP神经网络的优势,采用QPSO算法对BP神经网络的权值和阈值进行优化,并利用历史记录训练BP网络。仿真实验表明,与PSO训练的BP网络以及直接用BP网络进行预测的模型相比,基于QPSO训练的BP网络流量预测模型具有更好的预测能力。 相似文献
17.
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5.11—1对铀价格进行预测。结果表明:QPSO—BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为O.0025,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 相似文献
18.
对带宽、延时、延时抖动约束最小代价的QoS组播路由问题进行了研究,提出一种基于量子行为微粒群优化(QPSO)算法来设计路由优化算法。该算法采用一种节点序列编码方案,将路由优化问题转化成一种准连续优化问题,并采用罚函数处理约束条件。应用QPSO算法求解QoS组播路由问题的算例,并与遗传算法和改进后的遗传算法进行比较。计算机仿真实验证明,该算法可以更有效地求得QoS组播路由问题的优化解,可靠性较高。 相似文献
19.
根据模糊聚类算法和量子粒子群算法,提出一种基于以上两种算法的网络异常检测模型,并将该模型应用到Ad Hoc无线网络异常检测中。在聚类分析中,K-Means聚类算法是应用最广泛的方法之一。该模型先利用K-Means聚类算法的结果重新初始化粒子群,聚类过程都是根据数据向量间的欧几里德距离;再通过量子粒子群优化算法寻找聚类中心;最后进行仿真模拟,实验结果表明该模型对Ad Hoc无线网络异常检测是有效的。 相似文献