共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
为了较好克服量子粒子群算法存在早熟收敛的缺点,在分析算法参数和流程的基础上,提出了一种带变异操作的改进量子粒子群优化算法。针对传统BP算法易于陷入局部极小的不足,将改进的算法应用到BP神经网络的学习过程中,修正BP网络的权值和阈值,提高其收敛性能。并将优化的BP神经网络模型应用于入侵检测中,用标准入侵检测数据对基于不同算法的BP网络进行仿真实验比较。实验结果表明,改进后的BP算法迭代次数少,收敛速度有所提高,在一定程度上提高了入侵检测率。 相似文献
3.
基于QPSO训练支持向量机的网络入侵检测 总被引:1,自引:0,他引:1
对于大规模入侵检测问题,分解算法是训练支持向量机的主要方法之一.在结构风险最小化的情况下,利用改进后的蚁群算法(QPSO)解决二次规划问题(QP),寻找最优解,并对 ArraySVM 算法进行了改进,同时对KDD入侵检测数据进行了检测.结果表明,算法精确度高于改进前的 ArraySVM 算法,并且减少了支持向量点数量. 相似文献
4.
为了提高网络入侵检测的准确性与检测效率,弥补由单一优化算法带来的计算精度低、易陷入局部极值等不足,将差分算法的思想引入量子粒子群算法中,提出了一种改进量子粒子群算法(Improved Quantum Particle Swarm Optimization algorithm,IQPSO)和改进差分算法(Improved Difference Evolution,IDE)相融合的IQPSO-IDE算法,并将IQPSO-IDE算法对支持向量机(Support Vector Machine,SVM)的参数进行优化。以此为基础,设计了一种基于IQPSO-IDE算法的网络入侵检测方法。实验结果表明,IQPSO-IDE算法与传统的QPSO、GA-DE、QPSO-DE算法相比,不仅在效率上有了明显的改善,而且在网络入侵检测的正确率上分别提高了5.12%、3.05%、2.26%,在误报率上分别降低了3.31%、1.54%、0.93%,在漏报率上分别降低了1.26%、0.73%、0.52%。 相似文献
5.
提出基于量子粒子群的投影寻踪聚类算法,该算法将量子粒子群的全局搜索能力与投影寻踪对高维数据的降维能力相结合,有效解决了高维数据聚类计算量大效率低的问题。并将该算法应用于三种不同的测试数据,仿真实验结果表明该算法具有更好的效率,且提高了聚类效果,是解决高维聚类问题的一种有效方法。 相似文献
6.
为了较好克服量子粒子群算法存在早熟收敛的缺点,在分析算法参数和流程的基础上,提出了一种带变异操作的改进量子粒子群优化算法。针对传统BP算法易于陷入局部极小的不足,将改进的算法应用到BP神经网络的学习过程中,修正BP网络的权值和阈值,提高其收敛性能。并将优化的BP神经网络模型应用于入侵检测中,用标准入侵检测数据对基于不同算法的BP网络进行仿真实验比较。实验结果表明,改进后的BP算法迭代次数少,收敛速度有所提高,在一定程度上提高了入侵检测率。 相似文献
7.
粒子群算法在投影寻踪模型优化求解中的应用 总被引:5,自引:0,他引:5
粒子群优化(Particle Swarm Optimization,PSO)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论.PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成问题的优化.针对投影寻踪模型中的最佳投影方向优化问题.运用PSO算法和惩罚函数法相结合对该优化问题进行了计算.仿真实验结果表明:PSO算法对于求解有复杂约束的非线性目标函数优化问题是可行的,且算法的收敛速度快,编程结构简单,易于实现,从而为各领域运用投影寻踪模型评价方法提供了强有力的寻优方法,具有较广的应用前景. 相似文献
8.
遗传-粒子群的投影寻踪模型 总被引:2,自引:0,他引:2
以前的投影寻踪研究都是采用遗传算法来寻找最优的投影方向,但遗传算法对初始种群的选择有一定的依赖性,收敛速度较慢,而且得到的也未必是最优解。粒子群算法是一种模拟鸟群飞行觅食的行为,通过个体之间的协作来寻找最优解的进化计算技术。根据遗传算法和粒子群算法的优缺点,将两者有效地结合在一起,提出了遗传-粒子群的投影寻踪模型。该方法能有效地解决投影寻踪模型中投影方向的寻优问题,并将该方法应用于文本分类,在Reuters-21578文档集上分别采用KNN和朴素贝叶斯方法进行实验,结果表明此方法能有效提取投影方向,取得了满意的分类效果,也提高了算法收敛到最优解的能力。 相似文献
9.
针对粒子群算法容易陷入局部最优解,将遗传算法的交叉和变异引入到粒子群算法中。根据不同的收敛情况及交叉和变异的特点使用两种算子,提出一种既能预防陷入局部最优解又能跳出局部最优解的混合粒子群算法,将该算法应用到投影寻踪动态聚类模型中来优化投影方向,得到近似最好的投影寻踪动态聚类模型。实验证明,相对于原始粒子群算法,该方法可以有效地避免陷入局部最优解,而且投影效果也更好。 相似文献
10.
在入侵检测系统中,将正常状态与异常状态区分开来,是目前所面临的一个难点。针对这一问题,提出了在异常检测中运用量子粒子群算法(QPSO)对隶属度函数参数进行优化的方法。把隶属度函数里的参数组合当作一个粒子,在粒子的迭代进化中运用模糊数据挖掘的技术,可以搜索到最佳的参数组合,最大限度地把正常状态和异常状态区分开来,提高了异常检测的准确性,并通过实验验证了这一方法的可行性。 相似文献
11.
利用云模型云滴的随机性和稳定倾向性的特点;提出了一种云模型云滴机制的量子粒子群优化算法;该算法在量子粒子群优化的基础上;由云模型的X;Y条件发生器产生杂交操作;由基本云发生器产生变异操作;用于求解具有变量边界约束的非线性复杂函数最优化问题。仿真结果表明;该算法具有计算精度较高;搜索速度较快等特点;具有一定的参考和应用价值。 相似文献
12.
13.
提出了一种将量子粒子群优化算法和半监督模糊核聚类算法相结合的混合算法,用以解决入侵检测算法中模糊聚类算法对初始值敏感,容易陷入局部最优的问题。该算法对少量标记数据进行监督聚类得到正确模型,运用这个模型指导大量未标记数据进行聚类,扩充标记数据集合,对仍没有确定标记的数据利用量子粒子群优化的模糊核聚类算法进行聚类,确定其标记类型。通过KDD CUP99实验数据的仿真,实验结果表明,该算法在入侵检测中能获得理想的检测率和误检率。 相似文献
14.
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5.11—1对铀价格进行预测。结果表明:QPSO—BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为O.0025,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 相似文献
15.
16.
一种求解多峰函数优化问题的量子行为粒子群算法 总被引:4,自引:2,他引:2
介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索,从而保证每个峰值都有同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物种形成的QPSO算法可以尽可能多地找到峰值点,峰值收敛性能优于PSO。 相似文献
17.
基于量子粒子群求解混合整数非线性规划 总被引:1,自引:0,他引:1
在经典微粒群算法的基础上提出一种有较高收敛性能的智能算法:量子粒子群(QPSO)算法。并用于求解混合整数非线性规划问题。实验室证明QPSO算法收敛性能好、速度快,为求解混合整数非线性规划开辟了新途径。 相似文献
18.
19.
带自适应变异的量子粒子群优化算法 总被引:6,自引:0,他引:6
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。 相似文献