首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
使用KNN(K Nearest Neighbor)分类算法进行不良文本信息过滤时,由于包含不良信息的样本不易获取,导致分类器预测结果严重倾向于多数类。为改善少数类过滤效果,从数据层的角度改进了传统的KNN算法:先将少数类样本聚类分组,再在每个聚类内部使用遗传交叉生成新样本,并验证其有效性,最终获取到各类别样本数量基本均衡的训练样本集合并训练KNN分类器。实验结果表明,本文的方法可有效识别不良文本。此方法同时适用于其他关注少数类分类精度的不均衡数据集分类问题。  相似文献   

2.
针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。  相似文献   

3.
针对支持向量机(SVM)在超平面附近进行不平衡数据(imbalanced datasets)分类的不准确性,提出了一种改进SVM-KNN算法,该算法在分类阶段计算测试样本与最优超平面的距离,如果距离差大于给定阈值可直接应用支持向量机分类;如果距离差小于给定阈值,则将所有支持向量都作为测试样本的近邻样本,进行KNN分类。通过对UCI数据集的大量实验表明,该算法在少数类样本的识别率和分类器的整体性能上有明显改善。  相似文献   

4.
KNN及其改进算法进行分类时,如样本集中、样本过少或各类样本的密度差异较大,都将会影响最后的分类精度。提出一种基于聚类技术的小样本集KNN分类算法。通过聚类和剪理,形成各类的样本密度接近的新的样本集,并利用该新样本集对类标号未知数据对象进行类别标识。通过使用标准数据集的测试,发现该算法能够提高KNN的分类精度,取得了较满意的结果。  相似文献   

5.
基于小样本集弱学习规则的KNN分类算法*   总被引:2,自引:0,他引:2  
KNN及其改进算法使用类标号已知的数据集 对类标号未知的数据集 进行类别标识,如果 中的数据数量过少,将会影响最后的分类精度。基于小样本弱学习规则的KNN分类算法旨在提高基于小样本集的KNN算法的分类精度,它首先对 中的数据对象进行学习,从中选取一些数据,利用学到的标签知识对其进行类别标号,然后将其加入到 中,最后利用扩展后的 对 中的数据对象进行类别标识。通过使用标准数据集的测试发现该算法能够提高KNN的分类精度,取得了较满意的结果。  相似文献   

6.
基于改进SMOTE的非平衡数据集分类研究   总被引:1,自引:0,他引:1  
针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K-Nearest Neighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。  相似文献   

7.
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制.结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题.UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。  相似文献   

8.
处理不平衡数据分类时,传统支持向量机技术(SVM)对少数类样本识别率较低。鉴于SVM+技术能利用样本间隐藏信息的启发,提出了多任务学习的不平衡SVM+算法(MTL-IC-SVM+)。MTL-IC-SVM+基于SVM+将不平衡数据的分类表示为一个多任务的学习问题,并从纠正分类面的偏移出发,分别赋予多数类和少数类样本不同的错分惩罚因子,且设置少数类样本到分类面的距离大于多数类样本到分类面的距离。UCI数据集上的实验结果表明,MTL-IC-SVM+在不平衡数据分类问题上具有较高的分类精度。  相似文献   

9.
不均衡数据集文本分类中少数类样本生成方法研究*   总被引:1,自引:0,他引:1  
针对传统的分类算法在处理不均衡样本数据时,其分类器预测倾向于多数类,少数类分类误差大,提出了一种基于聚类和遗传算法的样本生成方法。先通过K-means算法将少数类样本聚类分组;再在每个聚类的内部使用遗传交叉和变异操作获取新样本,并进行有效性验证;最后使用原始数据集和新数据集分别训练K最近邻(K nearest neighbor,KNN)及支持向量机(support vector machine,SVM)分类器。实验结果表明此方法有效改善了少数类分类效果。  相似文献   

10.
针对少数类样本合成过采样技术(Synthetic Minority Over-Sampling Technique, SMOTE)在合成少数类新样本时会带来噪音问题,提出了一种改进降噪自编码神经网络不平衡数据分类算法(SMOTE-SDAE)。该算法首先通过SMOTE方法合成少数类新样本以均衡原始数据集,考虑到合成样本过程中会产生噪音的影响,利用降噪自编码神经网络算法的逐层无监督降噪学习和有监督微调过程,有效实现对过采样数据集的降噪处理与数据分类。在UCI不平衡数据集上实验结果表明,相比传统SVM算法,该算法显著提高了不平衡数据集中少数类的分类精度。  相似文献   

11.
针对风机数据集的不平衡问题,提出了一种BSMOTE-Sequence采样算法,在合成新样本时综合考虑空间和时间特征,并对新样本进行清洗,从而有效减少噪声点的生成。首先,根据每个少数类样本的近邻样本的类别比例,将少数类样本划分为安全类样本、边界类样本和噪声类样本。然后,对每个边界类样本都遴选出空间距离、时间跨度最接近的少数类样本集,利用线性插值法合成新样本,并过滤掉噪声类样本以及类间重叠样本。最后,以支持向量机(SVM)、卷积神经网络(CNN)、长短期记忆(LSTM)人工神经网络作为风机齿轮箱故障检测模型,F1-Score、曲线下面积(AUC)和G-mean作为模型性能评价指标,在真实风机数据集上把所提算法与常用的多种采样算法进行对比,实验结果表明:相比已有算法,BSMOTE-Sequence算法所生成样本的分类效果更好,使得检测模型的F1-Score、AUC和G-mean平均提高了3%,该算法能有效地适用于数据具有时序规律且不平衡的风机故障检测领域。  相似文献   

12.
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。  相似文献   

13.
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。  相似文献   

14.
不平衡数据常出现在各应用领域中,传统分类器往往关注于多数类样本而导致样本分类效果不理想。针对此问题,提出一种基于聚类欠采样的集成分类算法(ClusterUndersampling-AdaCost, CU-AdaCost)。该算法通过计算样本间维度加权后的欧氏距离得出各簇的样本中心位置,根据簇心邻域范围选择出信息特征较强的多数类样本,形成新的训练集;并将训练集放在引入代价敏感调整函数的集成算法中,使得模型更加关注于少数类别。通过对6组UCI数据集进行对比实验,结果表明,该算法在欠采样过程中抽取的样本具有较强的代表性,能够有效提高模型对少数类别的分类性能。  相似文献   

15.
针对非平衡数据集中类分布信息不对称现象,提出一种新的过采样算法DB_SMOTE(Distance-based Synthetic Minority Over-sampling Technique),通过合成少数类新样本解决样本不足问题。算法基于样本与类中心距离,结合类聚集程度提取种子样本。根据SMOTE(Synthetic Minority Over-sampling Technique)算法思想,在种子样本上实现少数类新样本合成。根据种子样本与少数类中心距离构造新样本分布函数。基于此采样算法并在多个数据集上进行分类实验,结果表明DB_SMOTE算法是可行的。  相似文献   

16.
不平衡数据是机器学习中普遍存在的问题并得到广泛研究,即少数类的样本数量远远小于多数类样本的数量.传统基于最小化错误率方法的不足在于:分类结果会倾向于多数类,造成少数类的精度降低,通常还存在时间复杂度较高的问题.为解决上述问题,提出一种基于样本空间分布的数据采样方法,伪负样本采样方法.伪负样本指被标记为负样本(多数类)但与正样本(少数类)有很大相关性的样本.算法主要包括3个关键步骤:1)计算正样本的空间分布中心并得到每个正样本到空间中心的平均距离;2)以同样的距离计算方法计算每个负样本到空间分布中心的距离,并与平均距离进行比较,将其距离小于平均距离的负样本标记为伪负样本;3)将伪负样本从负样本集中删除并加入到正样本集中.算法的优势在于不改变原始数据集的数量,因此不会引入噪声样本或导致潜在信息丢失;在不降低整体分类精度的情况下,提高少数类的精确度.此外,其时间复杂度较低.经过13个数据进行多角度实验,表明伪负样本采样方法具有较高的预测准确性.  相似文献   

17.
针对传统采样方式准确率与鲁棒性不够明显,欠采样容易丢失重要的样本信息,而过采样容易引入冗杂信息等问题,以UCI公共数据集中的不平衡数据集Pima-Indians为例,综合考虑数据集正负类样本的类间距离、类内距离与不平衡度之间的关系,提出一种基于样本特性的新型过采样方式.首先对原始数据集进行距离带的划分,然后提出一种改进的基于样本特性的自适应变邻域Smote算法,在每个距离带的少数类样本中进行新样本的合成,并将此方式推广到UCI数据集中其他5种不平衡数据集.最后利用SVM分类器进行实验验证的结果表明:在6类不平衡数据集中,应用新型过采样SVM算法,相比已有的采样方式,少(多)数类样本的分类准确率均有明显提高,且算法具有更强的鲁棒性.  相似文献   

18.
不平衡数据分类是当前机器学习的研究热点,传统分类算法通常基于数据集平衡状态的前提,不能直接应用于不平衡数据的分类学习.针对不平衡数据分类问题,文章提出一种基于特征选择的改进不平衡分类提升算法,从数据集的不同类型属性来权衡对少数类样本的重要性,筛选出对有效预测分类出少数类样本更意义的属性,同时也起到了约减数据维度的目的.然后结合不平衡分类算法使数据达到平衡状态,最后针对原始算法错分样本权值增长过快问题提出新的改进方案,有效抑制权值的增长速度.实验结果表明,该算法能有效提高不平衡数据的分类性能,尤其是少数类的分类性能.  相似文献   

19.
不平衡数据集中,样本的分布位置对于决策边界具有差异性,传统的采样方法没有根据样本位置做区别化采样处理.为此提出一种不平衡数据中基于异类k距离的边界混合采样算法(BHSK).通过异类k距离识别出边界集;再根据支持度将边界少数类样本细分为三类,分别采用不同的过采样方法和过采样倍率,根据少数类样本的不同重要性进行过采样,生成...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号