首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在实验室中,采用溶胶-凝胶法,在900℃的温度下,合成出组成为:0.894BaO-0.03B_2O_3-0.94SiO_2:0.045Eu,~(3+)0.008Bi~(3+)(加入Li~+作为电荷补偿剂)发光体。利用红外光谱、X射线衍射谱、热重及差热分析研究了由凝胶至发光晶体的转变。讨论了在硼硅酸盐基质中.Eu~(3+)和Bi~(3+)的发光行成。  相似文献   

2.
用固态反应合成了(Ca,Zn)0-Al_2O_3-SiO_2:Eu~(3+),Bi~(3+)发光体。通过激发光谱和发光光谱的测试,探索了合成条件和基质组成对发光性能的影响。得到了发光体最佳组成为(0.75Ca,0.25Zn)O-0.05Al_2O_3-1.5SiO_2:0.02Eu~(3+),0.03Bi~(3+),最佳烧成温度为1100℃。实验结果表明,在这种基质中 Bi~(3+)对 Eu~(3+)有较好的敏化作用,可以提高 Eu~(3+)的发光强度。  相似文献   

3.
用分析纯试剂经提纯制备的CaCO_3,SrCO_3,BaCO_3,Li_2CO_3,Al_2O_3,SiO_2,Bi_2O_3,Eu_2(C_2O_4)_3为原料,通过固态反应合成了(M,M′)_(1.920)O·0.1Al_2O_3·1.5SiO_2:Eu_(0.025)~(3+),Bi_(0.04)~(3+)(M,M′为Ca~(2+),Sr~(2+),Ba~(2+)中的任两种)系列发光材料。研究了基质的化学组成对Bi~(3+)敏化Eu~(3+)发光特性的影响规律。实验结果表明,激发Bi~(3+)时Eu~(3+)的发射谱线的分裂和~5D_0—~7F_2/~5D_0—~7F_1跃迁强度比值都受基质阳离子半径的较大影响。各组阳离子组合时Bi~(3+)都能敏化Eu~(3+)的发光。Eu~(3+)的发射以~5D_0—~7F_2跃迁为主,~5D_0—~7F_1跃迁强度较弱。  相似文献   

4.
利用凝胶方法在较低温度下合成了 CaO-Al_2O_3-SiO_2:Eu~(3+),Bi~(3+)发光材料,通过实验确定了最佳化学组成及最佳合成条件。并用 X-射线粉末衍射图推测了结构。通过激发光谱及发光光谱的测试,研究了此种发光材料的发光性能及 Bi~(3+)对 Eu~(3+)的敏化作用。  相似文献   

5.
采用溶胶-凝胶法首次合成出 MgY_(4-x-y-z)Si_3O_(13)∶Eu_z~(3+),Bi_y~(3+),Gd_x~(3+)系列发光体.其结构与ASTM 卡片记载的 MgY_4Si_3O_(13)的结构相同,属于六方晶系.在每 mol 基质中,Eu~(3+)、Bi~(3+)和 Gd~(3+)的最佳掺杂量分别为0.07,0.025和0.2mol.在发光体由非晶态向晶态的转变过程中,Eu~(3+)的发光强度和所处位置对称性都发生了显著变化.当基质以 Eu~(3+)、Bi~(3+)共掺杂时,Bi~(3+)的兰色发光和 Eu~(3+)的橙红色发光都很强,但 Bi~(3+)向 Eu~(3+)的能量传递效率很低,适量的 Gd~(3+)的加入可增强 Bi~(3+)对Eu~(3+)发光的敏化效果.  相似文献   

6.
Li_(0.5)MAl_(0.5)SiO_4:Eu,Bi的合成和发光特性(M=Mg,Ca,Sr,Ba)   总被引:1,自引:0,他引:1  
首次用高温固相反应合成了 Li_(0.5)MAl_(0.5)SiO_4:Eu,Bi(M=Mg,Ca,Sr,Ba)发光体,研究了基质中不同碱土金属离子对 Eu~(3+)和 Bi~(3+)的发光特性以及 Bi~(3+)敏化 Eu~(3+)发光性能和能量传递特点,得到了良好的基质组成和一些规律性结果。用395nm 紫外线激发,M=Mg 时的发光强度比 Y(V,P)O_4:Eu强约60%。Bi~(3+)发光的 Stokes 位移与 M(Ⅱ)的离子半径呈线性关系。  相似文献   

7.
以高纯的 Eu_2O_3,金属 Bi,CaCO_3,Li_2CO_3以及 Si(OC_2H_5)_4(A.R.)为原料,采用溶胶-凝胶法,合成 CaO-SiO_2:Eu~(3+),Bi~(3+)。合成温度较高温固相反应法低300—400℃。最佳组成为0.89CaO-SiO_2:0.045Eu~(3+),0.01Bi(3+)。利用红外光谱、X 射线粉末衍射谱、热重及差热分析研究了由凝胶向发光晶体的转变过程。通过激发光谱和发光光谱的研究,发现 Bi~(3+)离子向 Eu~(3+)离子的能量转移是十分有效的。  相似文献   

8.
采用溶胶-凝胶法制备了掺杂铕离子(Eu~(3+))的硼酸钇(YBO_3)-2二氧化硅(2SiO_2)的红色发光体,通过X射线粉末衍射仪(XRD)、红外光谱(FT-IR)、激发和发射光谱表征和研究了样品的结构和发光性能,确定制备该发光体所需的最佳退火温度为900℃;样品在612nm监测波长下,最佳激发波长为395nm,Eu~(3+)的最佳掺杂量为9%(摩尔百分数)。FT-IR、XRD测试表明,温度达到900℃时,晶体处于晶型转变,此时最有利于钇离子(Y~(3+))、Eu~(3+)的掺杂,样品发光最好。在1000℃时,样品大的三维网结构被破坏,不利于Eu~(3+)的掺杂和发光。  相似文献   

9.
用高温固相反应合成了 CaSiO_3∶Bi,CaSiO_3∶Eu 和 CaSiO_3∶Eu,Bi 发光体。通过 X 射线粉末衍射、红外光谱、激发光谱和发射光谱等方法,研究了发光体的晶体结构、化学成键性和发光特性。CaSiO_3∶Bi 属于单斜晶系,具有硅灰石结构,其中 Bi~(3+)的发光位于近紫外区的353nm。在 CaSiO_3∶Eu,Bi 中,Bi~(3+)对 Eu~(3+)有较强的敏化作用,适当增加 Bi~(3+)的含量,可提高 Eu~(3+)发射的强度比(R=I_(5D_0-~7F_1))/(I_(5D_0-~7F_2))增加 Eu~(3+)的含量可增强 Bi~(3+)对 Eu~(3+)的敏化效果。  相似文献   

10.
采用水热法制备了铕、钐共掺杂的钼酸锶(Sr_(1-x-y)MoO_4∶xEu~(3+),ySm~(3+))系列发光材料,对样品的晶体结构、微观形貌和发光特性进行了研究。结果表明:制备的样品均具有体心四方白钨矿结构;样品的颗粒比较均一,分散性较好,颗粒粒径1~2μm;三价稀土铕离子(Eu~(3+))和钐离子(Sm~(3+))共同掺杂样品的激发光谱由位于350~500nm的系列激发峰构成,同时存在Eu~(3+)和Sm~(3+)的特征激发峰,激发主峰位于395nm和465nm,表明样品能被近紫外光和蓝光有效激发;其发射主峰位于615nm,Sm~(3+)的掺杂能对Eu~(3+)起敏化作用,增强Eu~(3+)的红光发射强度;Eu~(3+)、Sm~(3+)的最佳掺杂量分别为x=0.04,y=0.03,制得的Sr_(1-x-y)MoO_4∶xEu~(3+),ySm~(3+)发光材料的最强相对发射强度达5000(光栅狭窄缝均为5.0测试条件下),具有较好的发光性能。  相似文献   

11.
铕掺杂钒酸钇(YVO_4:Eu~(3+))作为常用的下转换发光材料一直受到广泛的关注和研究,但是YVO_4:Eu~(3+)的表面缺陷会严重影响材料的发光效率。为了进一步改善YVO_4:Eu~(3+)纳米粉体材料的粒度分布和形貌特点,在亚微米级别的SiO_2微球表面涂覆一层YVO_4:Eu~(3+),制成YVO_4:Eu~(3+)@SiO_2核–壳结构,得到单分散的球形YVO_4:Eu~(3+)下转换发光材料,实现YVO_4:Eu~(3+)的发光性能和SiO_2球形特性的有机结合。研究发现,当壳核比为0.6时,YVO_4:Eu~(3+)@SiO_2核–壳结构材料的发光强度可达到纯纳米粉体材料发光强度的90%以上。将改性后的YVO_4:Eu~(3+)@SiO_2核–壳结构材料涂覆在硅基薄膜太阳电池上,可使电池的短路电流密度和转化效率分别由6.694 m A/cm~2和9.40%提升至8.417 m A/cm~2和10.15%,增益效果较为明显。实验结果表明,采用溶液法制备的YVO_4:Eu~(3+)@SiO_2纳米粉体材料由于具有形貌规则、团聚小和尺寸分布均匀等特点,可用作硅基薄膜太阳电池下转换发光层材料。  相似文献   

12.
在还原气氛下,采用高温固相法合成了Ca_2MgSi_2O_7:Eu~(2+),Rs~(3+) (R~(3+)=Ce~(3+),Y~(3+))系列荧光粉.结果表明,少量稀土离子的掺入没有改变晶体的物相结构.在Ca_2MgSi_2o_7:Euz~(2+)荧光粉中,Ce~(3+)和y~(3+)的掺入对荧光强度的影响较大,且与掺杂元素、掺杂量相关.当掺杂Ce~(3+)和Y~(3+)的量分别为0.007mol和0.05mol时,所得荧光粉在532nm处的发光强度分别是未掺杂时的127%和117%.结果表明,在Ca_2MgSi_2O_7中Ce~(3+)与Eu~(2+)存在能量传递,Ce~(3+)的加入显著敏化了Eu~(2+)的发光,导致荧光强度的进一步提高;Y~(3+)的掺杂可以使荧光粉的粒径减小,并导致基质中的电荷缺陷而敏化Eu~(2+)发光,从而使荧光强度进一步提高.  相似文献   

13.
采用传统高温固相法在较低温度下制备Eu~(3+)/Bi~(3+)共掺杂Ba_3YB_3O_9红色荧光粉,利用XRD仪和荧光光谱仪对样品Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)的晶体结构和发光性质进行了表征。XRD结果表明,Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)为纯相晶体。激发和发射光谱表明,样品可以被近紫外350~420 nm波段激发,最强激发峰位于393 nm,发射光谱呈现出Eu~(3+)的特征峰,谱带峰值位置在593 nm、613 nm,分别对应~5D_0-~7F_1、~5D_0-~7F_2特征跃迁。最强发射对应的掺杂浓度是0.12 mol。Ba_3Y_(0.87)B_3O_9∶0.12Eu~(3+),0.01Bi~(3+)的CIE坐标为(0.643,0.356)时最接近标准红色坐标,获得极佳的演色性。样品Ba_3Y_(1-x-y)B_3O_9∶xEu~(3+),yBi~(3+)可以用作近紫外激发三基色白光LED的红色荧光粉。  相似文献   

14.
在无添加剂条件下,采用共沉淀法合成了花状独居石结构的YPO_4·2H_2O∶Eu~(3+)橙红色荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光致发光光谱(PL)等分析手段对样品的结构、形貌以及发光性能进行了表征。研究了Eu~(3+)掺杂浓度、pH值、磷酸量、合成温度对合成纳米材料的发光性能以及形貌的影响。结果表明,所合成的花状独居石结构的YPO_4·2H_2O∶Eu~(3+)橙红色荧光粉,在392nm紫外光激发下,观察到YPO_4·2H_2O∶Eu~(3+)的发射主峰位置在589nm处。当条件分别为掺杂浓度29%、pH=8、磷酸添加量为7mL、合成温度为80℃时样品具有最强的发光强度。在紫外灯照射下,样品呈现出明亮的橙红色。  相似文献   

15.
采用溶剂热法,以钨酸钠(Na_2WO_4·2H_2O)和氯化钙(CaCl_2)为原料,在V(醇)∶V(水)=3∶1,十二烷基磺酸钠(SDS)摩尔分数为1%,pH=7,180℃下,制备出了四方晶系结构的球形铕掺杂钨酸钙(CaWO_4∶Eu~(3+))纳米晶。通过X射线衍射(XRD)、扫描电镜(SEM)及荧光光谱(PL)对不同条件下制备出的产物的物相、形貌以及荧光性质进行表征,探讨了反应时间对产物形貌及发光性能的影响。结果表明,在不同反应时间下合成出了不同形貌的CaWO_4∶Eu~(3+)纳米晶。从荧光发射光谱可以看出,反应时间为24h的体系下合成出的球形CaWO_4∶Eu~(3+)纳米晶在393nm激发下于612nm处有强发射峰。由此,反应时间对CaWO_4∶Eu~(3+)纳米晶的物相和形貌及发光性能起到重要作用。  相似文献   

16.
(Ba,Sr)SiO_3:Eu~(2+)发光材料采用A.R.试剂合成并加以提纯过的BaCO_3、SrCO_3、H_2SiO_3、Li_2CO_3Eu_2(C_2O_4)_3为原料。在合成发光材料过程中,选用正交式验法进行实验条件的探索。得到了发光材料最佳组成为(Ba_(0.8),Sr_(0.2))_(0.98)Eu_(0.01),SiO_3或Ba_(0.98) Eu_(0.01)Li_(0.01)SiO_3;最佳实验条件为灼烧温度为1150℃,H_2气流量为4ml/min。并用日本岛津产RF-510荧光光谱仪测试了发光材料的激发光谱和发光光谱。  相似文献   

17.
采用高温固相法制备了Na_3Gd_2(BO_3)_3∶Tb~(3+),Eu~(3+)荧光粉,并对样品的物相组成、微观形貌、发光性能和能量传递进行了分析。结果表明,Na_3Gd_(2-x)(BO_3)_3∶xTb~(3+)荧光粉在紫外和近紫外区域有较强的激发峰,在368nm波长激发下,发射光呈绿色,Tb~(3+)最佳掺杂量为x=0.04。随着在Na_3Gd_(1.96)(BO_3)_3∶0.04Tb~(3+)中掺入Eu~(3+),Tb~(3+)对Eu~(3+)产生了以电偶极-电偶极相互作用为主的能量传递,且传递效率随Eu~(3+)掺杂量的增加而逐渐增大。发射光谱中Tb~(3+)的发射峰强度逐渐减弱,而Eu~(3+)的发射峰强度逐渐增强,导致Na_3Gd_(1.96-y)(BO_3)_3∶0.04Tb~(3+),yEu~(3+)荧光粉发光颜色由绿色向橙色变化。  相似文献   

18.
在不添加助剂的条件下,用微波共沉淀法法制备了铕、铽(Eu~(3+)、Tb~(3+))共掺杂的钨酸钙(CaWO_4)荧光粉。利用X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、荧光光谱(PL)等表征手段,对荧光粉的物相组成、形貌和发光性能进行了分析。研究了Eu~(3+)、Tb~(3+)的掺杂比例及总掺杂量、反应温度及反应物浓度对荧光性能的影响。结果表明,Eu~(3+)、Tb~(3+)的掺杂摩尔比例、总掺杂量、温度以及反应物浓度对荧光粉的发光性能均能产生影响,其中在温度为80℃、反应物浓度为0.12mol/L且Eu~(3+)和Tb~(3+)总物质的量比金属离子总物质的量为13.1%时,得到的Eu~(3+)、Tb~(3+)共掺荧光粉在256nm激发下发射光谱色坐标为(0.270,0.236),位冷白光区。  相似文献   

19.
首次研究了以Nd~(3+)离子为辅助激活剂,对Eu~(2+)掺杂的发光材料Sr_4Al_(14)O_(25):Eu~(2+)余辉性能的影响.用溶胶凝胶法合成了Eu~(2+), Nd~(3+)共掺杂的Sr_4Al_(14)O_(25):Eu~(2+),Nd~(3+)发光粉末,并用扫描电镜、X射线衍射计、荧光分光光度计、余辉亮度测试仪、热释光剂量计等手段对粉末样品进行了表征.结果表明,在1350℃得到了单一的Sr_4Al_(14)O_(25)相,粉末颗粒平均粒度在1μm左右.Eu~(2+), Nd~(3+)共掺杂的Sr_4Al_(14)O_(25):Eu~(2+),Nd~(3+)发光粉末有402和485nm两个发射峰,与Eu~(2+)单掺杂的Sr_4Al_(14)O_(25):Eu~(2+)相比,发射峰位置没有变化,但适量的掺杂可以大大提高余辉时间和余辉亮度,余辉时间可达18h以上.最后通过对热释光谱的分析解释了双掺杂发光粉余辉性能增强的原因,适宜深度的陷阱可以有效存储光能,增强余辉的时间和强度.  相似文献   

20.
采用共沉淀法制备了YGB:Eu~(3+)红色荧光粉.XRD研究表明,Gd~(3+)的掺入使其晶胞参数增加,并引起一定程度的晶格畸变.YGB:Eu~(3+)中Eu~(3+)的VUV激发发射主要借助于基质吸收,而CTS亦起一定作用.YGB:Eu~(3+)的基质吸收带与CTS均有一定的红移,强度有一定变化.在UV区存在Gd~(3+)→,Eu~(3+)的能量传递.由于Eu~(3+)5s5p轨道对晶场的屏蔽作用,Gd~(3+)浓度基本不影响发射峰的位置.Gd~(3+)浓度的增加,色纯度有一定的改善.Gd~(3+)的掺入影响了晶体对称性并使晶体中A格位数目增加是主要原因.适度的晶格畸变有利于基质对能量的吸收,使Eu~(3+)辐射效率达到最大,适宜的Gd~(3+)的浓度约为0.3mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号