首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
在分析铝合金"上盖"压铸件结构的基础上,通过三维建模及网格划分进行工艺分析、浇注系统计算、模具设计。根据铸件的温度场、流场、铸件缩孔缩松所在位置及孔隙率,模拟并优化出最佳压铸工艺参数为:压射速度为5 m/s,模具预热温度为220℃,铝合金浇注温度为660℃。根据优化的工艺参数进行实际生产,得到质量优良的"上盖"压铸件。  相似文献   

2.
根据铝合金滤清器支架的结构特点,设计了铝合金滤清器支架压铸模具和压铸工艺。用ProCAST模拟软件对滤清器支架进行压铸充型凝固过程数值模拟,模拟出合理的压铸工艺参数:浇注温度630℃,压射速度1.0m/s,模具预热温度200℃。用制造出的压铸模具进行压铸生产,得到了合格的压铸件,模拟结果可以应用于实际生产中。  相似文献   

3.
运用ProCAST数值模拟软件,对设计的铝合金端架进行了流动场和温度场的数值模拟。根据模拟结果改进了浇铸系统,确定了合理的压铸工艺参数:浇注温度610℃,模具预热温度220℃,压射速度2m/s。通过生产出的模具进行压铸生产实验,得到了合格的端架压铸件,验证了模拟结果可以应用于实际生产中。  相似文献   

4.
为了减少电连接器外壳端盖压铸件的缩孔体积,在综合考虑各种因素对铸件质量影响的条件下,以缩孔体积为试验指标,基于DOE方法,利用Pro CAST软件对压射速度、充型速度、浇注温度和模具温度进行了仿真分析.结果表明,对缩孔体积影响程度从大到小依次为压射速度、浇注温度、充型速度和模具温度.当工艺参数取最优值时,缩孔体积主要分布在排溢系统和浇注系统中.当按照最佳工艺参数进行生产时,铸件内部未产生缩孔和缩松,且铸件质量符合检验技术要求.  相似文献   

5.
对汽车EGR阀座进行结构分析,设计正交试验表,运用Pro CAST软件,根据正交试验方案对汽车EGR阀座压铸充型凝固过程进行数值模拟。根据模拟结果优化出EGR阀座压铸工艺参数:压射速度1m/s,模具预热温度190℃,浇注温度620℃。设计并制造出EGR阀座压铸模具,用优化出的压铸工艺参数进行压铸实验,得到了合格的EGR阀座压铸件。观察其金相组织,EGR阀座产品性能满足使用要求,验证了模拟结果的正确性,可应用于生产实践中。  相似文献   

6.
根据滤清器支架的结构特点,设计了滤清器支架压铸模具和压铸工艺。用ProCAST模拟软件对滤清器支架进行压铸充型凝固过程数值模拟,模拟出合理的压铸工艺参数:浇注温度650℃,压射速度1.4m/s,模具预热温度200℃。用优化出的压铸工艺参数进行压铸实验,得到合格的滤清器支架压铸件。观察金相组织,滤清器支架产品性能和质量满足使用要求,验证了模拟结果的正确性,可以应用于生产实践中。  相似文献   

7.
通过应用多种软件交换和数据接口技术,设计了正交实验以完成压铸过程数值模拟。结果表明:通过设置合理浇注系统、控制压铸速度和提高模具预热温度,可以有效减少铸件缩松缩孔;各参数对铸件缩松缩孔发生概率影响程度从大到小依次为浇注系统方式、模具预热温度、压铸速度;理想工艺方案为浇注系统a、压铸速度1 m/s、模具预热温度450℃。  相似文献   

8.
利用仿真软件FLOW-3D,对镁合金汽车方向盘骨架进行模拟.使用正交实验分析方法确定了压射速度、模具温度、浇注温度改变时压铸件产生缺陷百分比的变化.进行多组正交试验后,在优化的工艺参数下,观察液态镁合金充型及凝固过程中流场和温度场的分布情况,预测缺陷出现的部位,以寻求最佳的工艺参数,从而使铸造工艺和模具的设计得到了优化.模拟结果表明:最优的压射速度应为2.34m/s,模具初温为220℃,浇注温度为700℃,能达到最佳充型效果.  相似文献   

9.
用ProCAST数值模拟软件对阀体压铸件进行压铸过程数值模拟。模拟结果得到压铸工艺参数和内浇口尺寸大小都会对卷气量有影响,且这种影响是相互的、复杂的;而内浇口对缩松缩孔的影响大于压铸工艺产生影响。依据模拟结果确定阀体压铸工艺参数和内浇口尺寸:浇注温度630℃、模具预热温度190℃;浇注速度0.5m/s;内浇口面积75mm~2、厚度2.5mm、长度2mm。将模拟结果应用到实际生产中得到了合格的阀体压铸件。  相似文献   

10.
铸造充型过程的数值模拟技术是铸造领域的前沿技术。采用这些技术进行充型过程的数值模拟可以帮助人们更清楚地了解充型过程中金属液流动的自由表面和速度分布。为了给薄壁压铸件选择最佳浇注系统和最佳工艺参数,利用PROCAST软件对铸件的压铸过程进行了数值模拟,获得了铸件充型时间和温度场的分布,根据分析结果优化模具结构和压铸工艺。  相似文献   

11.
对YL112铝合金压铸件设计了3种类型的浇注系统,运用流体模拟软件Flow-3d对3种设计的充型过程进行模拟。通过观察温度场、压力场和表面缺陷的分布情况,预测充型过程中的氧化夹渣、气孔等缺陷。在分析模拟结果的基础上提出了浇注系统和溢流系统的优化方案,提高了铸件的质量。结果表明:在浇注温度620℃、模具连续工作温度200℃、冲头压射速度2.0 m.s-1的条件下,合理的溢流槽使金属液具有均匀填充型腔的填充路线的方案最为合理。  相似文献   

12.
为实现对挤压铸造生产过程的精确控制,运用有限元模拟软件对镁合金轴承保持架进行挤压铸造充型和凝固过程的数值模拟,得出最佳的挤压铸造工艺参数.优化的工艺参数为:浇注温度710 ℃,模具预热温度180 ℃,冲头压射速度25 mm/s,比压200 MPa,保压时间约为20 s.建立了充型时间和凝固时间与模具预热温度和冲头压射速度的数学关系式,并对液态合金的充型及凝固过程进行了可视化观察.模拟结果表明,充型、凝固过程合理,铸件结构完整,效果良好,说明镁合金轴承保持架具有良好的成形性.将此模拟结果应用到实践中,可优化挤压铸造过程,提高工作效率.  相似文献   

13.
根据外壳体铸件的结构特点设计铝合金外壳压铸模具,通过Pro CAST模拟软件对外壳体铸件进行充型凝固过程数值模拟,根据模拟的流场、温度场和缩孔缩松的分布,确定合理的工艺参数,经过生产验证,铸件质量合格,同时验证了模拟结果的准确性。  相似文献   

14.
据报道,美国威斯康星州的菲利普塑料公司,压铸成型镁合金中心机架以取代塑料.在盘型框架中已得到应用,这种部件是用一种触变模注工艺制造的.类似于塑料模注与压铸相结合的工艺方法。通过这种半固化模注工艺生产出的镁合金部件.较单纯的压铸件具有更好的EMI/RFI(电磁干扰/射频干扰)屏蔽性、更紧密的配合和更好的尺寸稳定性.是取代塑料或铝合金的新产品。这种镁合金部件重31克.比铝合金部件轻,且具有更高的密度和表面质量.还具有能成型不同壁厚复杂形状部件的特点。该镁合金铸件获得由北美压铸协会举办的2005年度国际压铸竞赛奖.  相似文献   

15.
选取铝合金汽车方向盘作为研究对象,利用Pro/E建模软件设计了侧铸浇注系统,并通过FLOW-3D软件对流场、温度场、应力场和表面缺陷生成情况进行模拟,通过分析模拟图得出侧铸浇注系统的合理性。基于此浇注系统对铝合金汽车方向盘进行正交试验,利用FLOW-3D软件对9组试验方案进行温度场、表面缺陷生成和卷气量分布情况模拟。通过分析得出影响该压铸件成形的规律,并选出该产品最合适的工艺参数:冲头速度3 m·s~(-1),浇注温度920 K,模具温度600 K。  相似文献   

16.
镁合金压铸件充型过程的数值模拟技术研究   总被引:4,自引:0,他引:4  
针对镁合金的压铸工艺特点和充型过程的不透明性,采用Pro/ENGINEER2001进行铸件的实体造型,并生成面网格文件.利用ProCAST软件模拟压铸件充型过程的物理场,预测了镁合金压铸件的缺陷位置,从而使模具的设计过程得到了优化.模拟运行表明,采用闭合式浇注系统充型平稳,温度场分布均匀,具有较少的气体夹杂和冷隔等倾向,使得镁合金压铸件的整体质量得到提高.  相似文献   

17.
对镁合金手机外壳的半固态压铸成形过程进行了数值模拟,预测了可能产生缩孔、缩松等缺陷产生的部位,分析了其形成原因.根据模拟结果对溢流槽等工艺参数进行了改进,优化了工艺参数.改进的工艺实现了顺序凝固,消除了缩孔、缩松缺陷,保证了压铸件质量.  相似文献   

18.
在分析壳体塑胶件结构工艺特点和外观要求的基础上,采取了符合实际和压铸工艺性的各项措施,从分型线、拔模斜度、顶杆、排溢系统的设计等方面对压铸工艺进行优化,解决了铸件防水问题,使壳体合格率达到93%以上,成功进行了产品的锌合金压铸件改型。  相似文献   

19.
内浇道截面积、充填速度、充填时间和压射比压都是重要的压铸工艺参数。设计压铸模时应当确定恰当的内浇道截面积,并使之与充填速度、充填时间和压射比压保持较好的匹配,以防止压铸模设计的失败。文章基于压铸系统匹配优化的思想,建立压铸工艺设计软件,使用软件进行内浇道截面积、充填速度和充填时间等压铸工艺参数的设计。  相似文献   

20.
以铝合金气动元件阀体铸件为研究对象,采用金属型低压铸造方法,对其低压铸造充型工艺进行研究。采用Procast数值模拟软件模拟不同的低压铸造充型工艺参数,对获得的模拟计算结果进行分析,根据计算获得的铸件充型过程和缺陷预测来优化工艺,调整充型工艺参数,最终获得合格的计算模拟结果。结果表明,在充型压力为0.01MPa、充型时间为2s、保压压力0.09MPa、浇注温度680℃、铸型预热250℃的条件下,铸件的缩孔缺陷最少,能够获得最为优良的铸件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号