共查询到20条相似文献,搜索用时 15 毫秒
1.
提出同步器齿环两种不同的热精锻成形工艺方案,借助有限元分析软件Deform-3D,模拟了两种工艺方案下齿环的热精锻成形过程,分析比较了两种方案中的金属流动规律和应变分布规律。模拟结果显示:工艺方案1的成形末期,在定位键与侧壁结合处变形较剧烈,该处存在两个方向的金属汇流,从而导致该处产生折叠缺陷;采用方案2,定位键最后充填,充填方式为金属的径向和轴向复合流动,定位键与侧壁的结合处不存在两个方向上的金属汇流,因此不会产生折叠缺陷。工艺试验表明,采用方案1成形的齿环在定位键与侧壁的结合处有明显的折叠缺陷,采用方案2成形的齿环充填饱满、未见折叠缺陷。数值模拟结果与工艺试验结果相吻合,数值模拟可以为实际生产提供指导。 相似文献
2.
3.
4.
在弧齿锥齿轮冷精整工艺过程中,热锻模具齿形的优化对于改善冷精整过程中齿面金属流动特性,解决齿顶尖部填充不满,以及啮合传动噪声的现象具有显著效果。选用农机变速箱齿轮,基于该齿轮功率大、强度高、工作环境为低速大负荷等特点,对齿轮模型进行精确建模,并进行TCA分析,通过导入齿面点的方式得到模腔模型。采用控制变量和数值模拟相结合的方法,改变刀盘直径将齿面修鼓。运用有限元软件DEFORM-3D,对成形过程进行模拟,对比观察两种齿面的速度矢量,解释了修形对改善金属流动方向的合理性。通过开模试验,进一步证实了该修形方法对于改善弧齿锥齿轮齿顶尖部填充不满,解决生产中存在的折叠、裂纹等缺陷具有显著优势。 相似文献
5.
6.
7.
8.
9.
基于约束分流原理,以某厂生产的减速小齿轮为例,采用数值模拟和物理试验相结合的方法,对直齿圆柱齿轮精锻成形工艺进行了深入研究。通过分析小芯棒约束分流和凸缘分流两种方案下坯料孔径的大小对直齿圆柱齿轮成形过程的影响,确定出可以改善充填性与降低工作载荷的最佳工艺方案:浮动凹模下坯料尺寸为直径38 mm、孔径16 mm、高度27.3 mm的小芯棒约束分流与固定凹模下坯料尺寸为直径38 mm、孔径18 mm、高度25.5 mm的凸缘分流。由小芯棒约束分流浮动凹模形式下的力-行程曲线可知,试验结果与有限元数值模拟结果能很好地吻合。 相似文献
10.
介绍了一种温精锻直伞锥齿轮自动化生产线在建设过程中遇到的一些技术问题及解决方案.该生产线的研制提高了温精锻直伞锥齿轮的生产效率,降低了制造成本,在相关工业领域将发挥积极的示范作用,具有重要社会意义和经济意义. 相似文献
11.
提出带肋板齿轮坯开式模锻和闭式模锻两种热精锻成形工艺方案,借助有限元分析软件模拟了两种工艺方案下齿轮坯的成形过程,分析比较了两种方案中的金属流动规律。仿真结果显示:采用开式模锻,肋板充填不饱满,成形载荷大;采用闭式模锻,零件成形质量较高,成形载荷较小。导致开式模锻成形载荷大并且肋板充填不饱满的原因为:成形中后期充填肋板的金属流动阻力增加,金属径向流动加剧并形成较大飞边,随着上模下压,飞边变形消耗滑块能量,并增加了与模具的接触面积,导致成形力急剧增加而模具型腔充填不饱满。工艺实验表明,其结果与数值模拟相吻合。 相似文献
12.
13.
14.
15.
16.
运用三维刚塑性有限元计算软件Defrom-3D,对直齿圆柱齿轮温精锻成形过程进行模拟和变形抗力计算;将模腔充满度为99%时的单位成形力作为凹模载荷,利用Lame公式对组合凹模进行应力计算,比较了几种不同凹模结构对凹模受力的影响。 相似文献
17.
18.
直齿圆柱齿轮冷精锻成形的实验研究 总被引:2,自引:0,他引:2
研究了直齿圆柱齿轮冷精锻成形过程中载荷与齿形参数的关系,结果表明,直齿圆柱齿轮冷精锻成形的效果与齿形参数、模具结构和润滑条件等有密切关系,为其冷锻成形工艺和模具结构设计提供了可靠的参考依据. 相似文献
19.
在连杆衬套强力旋压生产工艺中,需"温挤制坯"对坯料进行先期处理,温挤后材料的损伤直接影响旋压的效果。应用Deform软件对衬套坯料的温挤压进行有限元模拟,随机选取5个节点,得到节点的损伤值随摩擦系数、挤压速度和坯料预热温度的变化规律,并由此得到温挤压后坯料的损伤随参数的变化为:坯料材料的损伤值随摩擦系数的增大而增大,随挤压速度的增大而增大,随坯料预热温度的增大反而减小。设计正交模拟试验,对试验结果进行方差分析得到摩擦系数对坯料损伤的影响最为显著,且当摩擦系数为0.1,挤压速度为1 mm·s-1,预热温度为650℃时,温挤压后坯料的最大损伤值最优,即坯料的损伤最小。 相似文献
20.
以锡青铜连杆衬套为研究对象,通过Deform-3D软件进行了数值模拟。利用单一因素工艺参数试验法和正交试验优化试验方法对发动机连杆衬套的温挤压过程进行了数值模拟分析,得到了摩擦因数、温挤压速度、温挤压温度等参数在温挤压过程中对挤压力、损伤值的影响规律和显著性影响。利用极差分析得到了两组最优的温挤压工艺参数,并通过数值模拟两组较优解对挤压力、损伤值的影响规律的对比,最终得到一组最优解,即摩擦因数为0.1、温挤压速度为5 mm·s-1、温挤压温度为700℃。根据连杆衬套温挤压试验验证了使用优化后的工艺参数能够制造出表面质量高的成形件。 相似文献