首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《上海金属》2021,43(1)
研究了中间退火对5052铝合金板材组织与性能的影响。对合金的拉伸性能及显微硬度进行测试,使用扫描电镜(SEM)对合金的断口形貌进行观察,使用金相显微镜及X射线衍射仪(XRD)对合金的显微组织和宏观织构进行分析。结果表明:经过中间退火的5052铝合金板材的屈服强度比直接轧制的低10 MPa左右,晶粒尺寸大约82%。中间退火试样不同方向的断后伸长率差别不大,而直接轧制试样的轧向较45°和90°方向的断后伸长率小9%,具有明显的各向异性。拉伸变形后中间退火试样晶粒沿最大切应力方向呈明显的流变特征,断口处韧窝发达、分布更均匀。中间退火试样的{100}001 Cube织构和{100}011 H织构等再结晶织构更强,而直接轧制试样的B织构{110}112和Goss织构{110}001等轧制织构更强。经中间退火的板材各向异性得到明显改善。  相似文献   

2.
采用透射电镜观察(TEM)、电子背散射成像技术(EBSD)和X射线衍射技术对比分析喷射成形Al-9.8Mg-1.5Li-0.4Mn合金交叉轧制态板材与挤压态板材的显微组织及织构特征,并测试板材的拉伸性能和深冲性能。结果表明:大压下量交叉轧制能促进动态再结晶的发生、细化晶粒组织以及改善再结晶晶粒的择优取向;与CBA和CCB轧制方式相比,CBB轧制方式显著降低了挤压态合金中典型Brass织构{110}112的取向密度,在β取向线上CBB轧制态板材中Copper织构{112}111和Brass织构{110}112的取向密度均最低,且板材中没有典型的织构特征;同时,CBB轧制态合金板材具有更好的深冲性能,在0°、45°和90°三个方向的力学性能基本一致,其室温拉伸强度、屈服强度和伸长率分别为617 MPa、523 MPa和大于20.1%,各方向力学性能偏差小于3%。  相似文献   

3.
采用光学金相显微镜(OM)、扫描电镜(SEM)和电子背散射衍射(EBSD)技术等手段,研究了不同轧制工艺下7150铝合金热轧板材的微观组织与织构演变。结果表明:沿板材厚度方向,由于轧制力的不均匀分布,板材表面变形大,表层细晶粒较多。从板材表面到中心,大角度晶界所占比例逐渐增加,0°~10°小角度晶界所占比例下降。由于板材表面所受摩擦力和变形较大,其形变储能大于板材中心,导致表面Taylor因子大的取向织构数量比中心多。轧制道次少,形变储能高,导致板材中心的S、R织构数量较多。轧制道次多的板材表面的最强织构为{012}221,1/4厚度处最强织构为{130}130,板材中心最强织构为{112}110。轧制道次较少的板材表面最强织构为R织构和Q织构,1/4厚度处最强织构为{315}112,板材中心最强织构为Copper{112}111织构。此外,轧制道次少的板材的断裂韧度明显较高,这可能与S、R织构的强弱有关。  相似文献   

4.
7050铝合金厚板织构、拉伸性能及断裂韧性的不均匀性   总被引:6,自引:0,他引:6  
采用光学显微镜、扫描电镜、透射电镜、X射线衍射、常温拉伸和紧凑拉伸实验,对120mm厚的7050铝合金板材的织构分布、拉伸性能及断裂韧性进行分析。结果表明:沿板材厚度方向,合金的组织、织构、强度及断裂韧性呈不均匀分布;在同一厚度处,合金的强度和断裂韧性具有明显的各向异性;由板材表层到中心,粗大第二相及再结晶晶粒尺寸逐渐增大;板材表层的织构主要由剪切织构{111}110和立方织构Cube{001}100组成,中心主要由β取向轧制织构和少量立方织构组成,1/4厚度处是过渡层;由板材表层到中心,轧向及长横向强度呈不均匀变化,板材中心处强度比表层的小;板材同一厚度处,强度和断裂韧性具有明显的各向异性,轧向强度大于长横向和短横向强度,L-T取向的断裂韧性大于T-L取向和S-L取向的断裂韧性;L-T取向的断裂方式主要是穿晶断裂,S-L取向的断裂方式以沿晶断裂为主,T-L取向是混合型断裂,其穿晶断裂比例比L-T取向的穿晶断裂比例小,沿晶断裂比例比S-L取向的沿晶断裂比例小。  相似文献   

5.
采用室温拉伸、X-射线衍射技术(XRD)等方法研究了不同取向条件下铝-镁-钪合金冷轧-退火态板材的织构类型以及拉伸力学性能的各向异性.通过Schmid因子及其倒数的加权计算,初步探讨了织构对合金板材力学性能各向异性的影响.结果表明,经350℃×1h退火后,铝-镁-钪合金板材的织构组分主要为S织构{123}<634>和Brass织构{110}<112>等典型的形变织构;合金板材在纵向(0°方向)和横向(90°方向)的屈服强度较高,在45°拉伸方向的屈服强度较低,并且表现出反常的各向异性,而伸长率则在45°拉伸方向上最高.经分析可知,织构是影响合金板材平面各向异性的主要因素.  相似文献   

6.
应用取向分布函数(ODF)研究分析了Er对Al-Mg-Si-Cu合金板材织构的影响。结果表明,铝合金轧制板材主要存在{100}011旋转立方织构,{111}110、{111}112黄铜R织构,常规织构B、S、C织构很弱,其原因与合金中含有大量弥散的金属间化合物粒子密切相关。固溶处理后,Er含量为0.1%的铝合金中,织构主要为Brass织构和Cube+ND25织构,PSN形核是合金再结晶的形核机制之一;Er含量增加到0.2%后,合金织构是较弱的Brass织构,PSN形核减弱。Er的加入引起基体晶格变化,降低铝合金板材的层错能,阻碍了交滑移的进行。  相似文献   

7.
研究了AA 7055铝合金板材不同厚度层屈服强度的演变规律,并采用背散射电子衍射(EBSD)技术对板材各厚度层进行了微观组织观察和织构组分测试.拉伸试验结果表明,AA 7055铝合金板材的屈服强度在板厚方向呈各向异性,从表面层到中心层屈服强度依次增加,并且在1/4厚度层的屈服强度值突然增大.EBSD结果表明,表面层附近晶粒呈近等轴状,中心层附近晶粒沿轧制方向拉长;此外,织构组分在中心附近以Brass、S、Copper为主,表面层附近则以Cube ND、Random取向为主.当合金沿板材轧制方向拉伸时,由于Brass、S、Copper是硬取向,它们提供较大的泰勒因子M值,从而使屈服强度增大;相反,Cube ND、Random是软取向,他们对屈服强度的贡献较小.另外,晶粒形貌也影响着屈服强度的各向异性.  相似文献   

8.
通过室温拉伸性能测试、金相组织观察、透射电镜分析以及取向分布函数测定,研究了25 mm厚时效态7475-T7351合金板材不同取向条件下的显微组织和力学性能,定量分析了织构与平面各向异性的关系。结果表明,7475-T7351合金板材纵向抗拉强度、屈服强度和伸长率分别为501MPa、428MPa、8.4%;横向抗拉强度、屈服强度和伸长率分别为491MPa、416 MPa、8.9%。纵向抗拉强度和屈服强度比横向高约10 MPa,但伸长率变化很小,表明板材具有各向异性。7475-T7351合金板材中的晶体织构主要有Cu织构{112}111、S织构{123}634和Brass织构{110}112,这3种织构是由于铝合金冷轧后受层错能影响产生的。经计算,它们在合金中的体积分数分别为19.95%、16.67%、12.06%。此外,还有相对较弱的立方织构{001}100,为再结晶时形成的织构,体积分数为4.58%。通过对施密特因子的计算,表明不同取向条件下合金板材力学性能的各向异性与合金织构密切相关。  相似文献   

9.
采用金相显微镜(OM)、透射电镜(TEM)、电子背散射成像技术(EBSD)和X射线,对比分析喷射成形Al-9Mg-1.8Li合金交叉轧制态板材与挤压态板材的微结构及织构特征,并测试板材的拉伸性能和深冲性能。结果表明:大变形量交叉轧制促进动态再结晶的发生,细化晶粒组织,改善再结晶晶粒的择优取向;与CBA和CCB轧制方式相比较,CBB轧制方式显著降低挤压态合金中典型的Brass织构{110}?112?的取向密度,在β取向线上CBB轧制态板材中的Copper织构{112}?111?取向密度最低,且板材中没有典型的织构特征;同时,CBB轧制态合金板材的具有更好的深冲性能,在0°、45°和90°方向的力学性能基本一致,其室温拉伸强度、屈服强度和伸长率分别在611 MPa、507 MPa和20.6%以上。  相似文献   

10.
对T4P态的商用6016铝合金板材沿不同方向的力学性能、显微组织和织构差异进行了研究。结果表明:合金沿不同方向的力学性能均存在明显差异,厚向异性系数r值和加工硬化系数n值均沿轧向最高,而沿45°方向最低;合金已发生完全再结晶,但是各部位再结晶晶粒仍然存在较大差异,表层晶粒数量较多且尺寸细小,而纵截面再结晶晶粒长宽比横截面的要大;合金板材沿厚度方向存在明显的织构梯度,表层主要以Cube织构{001}100和不常见的{114}131织构为主,而中间层除了Cube织构{001}100之外,还存在P{011}112、R{124}211以及{112}253;分析了织构组分与r值的关系,并建立了成形性能、组织和织构之间的定量关系。  相似文献   

11.
用X射线衍射法研究AgCu28合金的轧制变形织构组织和退火织构组织,对它们的延伸率和抗拉强度进行测试。结果表明,当AgCu28合金轧制变形量为95%时,Ag和Cu的主要变形织构是{110}112Brass织构;在H2气氛下经650℃,1.5h退火后,AgCu28的退火织构与变形织构相同;加工态AgCu28合金沿横向(TD)和轧制方向(RD)的抗拉强度分别为750和680MPa,退火态AgCu28合金沿TD和RD的抗拉强度分别是374和327MPa;退火态沿TD和RD的延伸率都约为12%。这表明在两元共晶合金中两相晶粒相互影响导致它们的变形织构与退火织构一致、晶粒显著细化、再结晶温度明显提高、抗拉强度显著提高并存在各向异性。  相似文献   

12.
以厚度为60 mm的6061铝合金板材为研究对象,采用Deform仿真分析技术研究了不同压下率轧制变形过程中板材温度、应变、应力场的变化规律,着重分析了对板材心部、1/4处、表层的影响,并结合粘塑性自洽(VPSC)有限元法研究了板材不同位置处的织构演变规律,为铝合金轧制过程中的变形行为和各向异性研究提供了新的方法。结果表明:多道次轧制过程中,心部与表层区域的最大温差受轧件压下率影响不大,最大温差为10℃,板材表层和1/4处的累积应变均始终大于心部,轧件与轧辊接触导致表层承受较大的应力,轧件局部表现出明显的应力分布不均匀的状态;轧件表层、1/4处以及心部均形成了β取向线上的3种典型织构,即Copper织构{112}<11-1>、Brass织构{011}<21-1>和S织构{123}<63-4>,随着轧制压下率的不断增大,织构的体积分数越来越大,织构强度也逐渐增大,其中,S织构的体积分数和强度上升趋势明显,进一步说明S织构相比其他两种织构对应变变化过程更加敏感。  相似文献   

13.
采用冷旋锻对TB9钛合金棒材进行多道次冷变形,利用OM、EBSD、XRD、TEM以及拉伸等实验研究了不同冷变形量TB9钛合金棒材的显微组织、织构和拉伸性能及其规律。结果表明,TB9钛合金棒材的晶粒尺寸随冷旋锻变形量的增大而减小,部分晶粒尺寸达到纳米级。同时,晶粒随变形量的增加沿旋锻轴向转动,形成择优取向,由初始{001}110和{001}100织构转变为110取向的α-fiber和γ-fiber{001}110、{112}110和{111}110织构。在亚结构、小尺寸晶粒以及织构的共同作用下,TB9钛合金的强度随变形量的增大而增加,延伸率和面缩率在70%冷变形后仍保持在一个较高的水平,具有优异的冷变形能力。  相似文献   

14.
采用X-ray衍射和光学显微镜对AA3104铝合金热粗轧板沿厚向的织构和组织进行研究。结果表明:热粗轧板中存在明显的组织和织构梯度现象;在表层及次表层,剪切织构占主导地位,表现为较强的旋转立方织构R-cube{001}110和{112}110织构,显微组织以再结晶组织为主;在中心层及过渡层,则以典型的形变织构(即Cu{112}111、S{123}634和Bs{011}211)及热变形流线组织为主;这种沿厚度方向的组织和织构梯度对热变形后再结晶织构也有很大影响,热粗轧板中原始的剪切织构有助于退火后立方织构的形成,而原始中心层的形变织构会促使热变形退火后产生{111}110剪切织构和P织构。  相似文献   

15.
室温下,对AZ31镁合金轧制板材依次沿轧向(RD)、横向(TD)和法向(ND)压缩,依据压缩路径的不同,分别对应RD、RD-ND、RD-TD和RD-TD-ND 4种压缩方式,分析上述压缩过程镁合金的力学性能和织构变化,并对上述压缩变形后的镁合金分别进行室温沿RD方向拉伸变形,分析不同压缩变形方式对拉伸力学性能的影响。结果表明:RD-TD压缩过程中对应的}2110{-}2110{二次孪晶大幅度提高屈服强度,试样经RD-TD压缩后产生强烈的}1110{锥面织构和}0110{柱面织构。镁合金经RD方向压缩后,在后续的RD方向拉伸变形中}2110{解孪晶的启动明显提高塑性。  相似文献   

16.
室温下,对AZ31镁合金轧制板材依次沿轧向(RD)、横向(TD)和法向(ND)压缩,依据压缩路径的不同,分别对应RD、RD-ND、RD-TD和RD-TD-ND 4种压缩方式,分析上述压缩过程镁合金的力学性能和织构变化,并对上述压缩变形后的镁合金分别进行室温沿RD方向拉伸变形,分析不同压缩变形方式对拉伸力学性能的影响。结果表明:RD-TD压缩过程中对应的}2110{-}2110{二次孪晶大幅度提高屈服强度,试样经RD-TD压缩后产生强烈的}1110{锥面织构和}0110{柱面织构。镁合金经RD方向压缩后,在后续的RD方向拉伸变形中}2110{解孪晶的启动明显提高塑性。  相似文献   

17.
以罐用3104铝合金热轧板为试验材料,分别采用X射线反射法和透射法检测了板材不同厚度层面的织构和整体织构.结果表明:铝合金热轧板每一层的织构都不相同,存在明显的织构不均匀性.X射线反射法检测的只是某一层面的织构,而透射法获取的是铝合金板整个厚度上的织构信息,因而是铝合金热轧板全面和准确的织构.铝合金热轧板中含有旋转立方织构{001}<110>,立方织构{001}<100>, {111}γ线织构,铜型织构{112}<111>,黄铜织构{110}<112>及其他{110}线织构等复杂织构组分.铝合金热轧工艺造成了铝合金板中的织构不均匀性,也是造成热轧板复杂织构组分的原因.  相似文献   

18.
通过拉伸试验、X射线衍射(XRD)和扫描电镜(SEM)等表征方法,研究了异步冷轧前预处理工艺对6016铝合金板材织构及成形性能的影响。结果表明:异步冷轧前预时效处理可提高该铝合金成品板材的强度而不明显降低其塑性,且其平面各向异性指数IPA值明显减小;塑性应变比$\bar{r}$值以及杯突值IE成形性能指标均有所提高且分别达到0.89和8.27。铝合金板材获得较好综合性能的主要原因在于经时效预处理铝合金成品板材的剪切织构E{111}<110>和F{111}<112>的强度略微提高以及晶粒尺寸的减小。  相似文献   

19.
通过显微硬度、拉伸性能测试、显微组织分析、扫描电镜分析以及背散射电子衍射分析,研究了室温与液氮控温80%轧制变形对Al-Sc合金组织及力学性能的影响。结果表明:室温轧制与液氮控温轧制后合金的硬度分别为105 HV0.3和162 HV0.3,抗拉强度、屈服强度、伸长率分别为335 MPa、296 MPa、5.5%和443 MPa、415 MPa、6.7%;轧制后合金中多为小角度晶界,室温与液氮控温轧制后平均晶粒尺寸分别为40 μm和1 μm;由于层错能的影响,合金液氮控温轧制之后的主要织构类型为Brass织构{110}<112>、S织构{123}<634>和 Copper织构{112}<111>。  相似文献   

20.
不同温度退火处理后Al-Mg与Al-Mg-Sc合金板材的织构演变   总被引:1,自引:0,他引:1  
采用X射线衍射反射法在角度(α)为0~75°时测量Al-Mg和Al-Mg-Sc合金板材经不同退火温度处理后的不完整极图,应用三维取向分布函数(ODF)以及晶粒取向汇集目标线(α、β取向线)研究合金冷轧板材中织构的形成及其在退火过程中的演变规律。结果表明:Al-Mg合金冷轧板材中主要存在Brass织构{011}211和Copper织构{112}111,退火温度升高到300℃时,Al-Mg合金板材的形变织构逐渐消失,Brass织构和Copper织构分别向立方织构{001}100以及旋转立方织构{001}110转变;添加Sc元素没有改变Al-Mg合金板材冷轧织构组分,但织构极密度和取向密度明显增强;退火温度升高到450℃时,Al-Mg-Sc合金板材的部分Brass织构和Copper织构才向立方织构和旋转立方织构转变,表明Sc的加入使Al-Mg-Sc合金在退火过程的再结晶温度显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号