首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
许乐俊  王世林  王勇  王淮斌 《电池》2023,(6):687-691
理解低压环境下锂离子电池热失控特性,对高原低压环境电池储能系统的安全运行以及航空运输至关重要。对低压环境下锂离子电池单体的热失控特性[包含喷发特性、表面温度、点燃时间、热释放速率(HRR)、质量损失率(MLR)和总产热量(THR)等]以及电池模组热失控蔓延特性进行综述。低压环境下,锂离子电池单体燃爆响应时间变长,HRR、MLR和THR均降低。对今后的研究方向给出建议,为低压环境下锂离子电池的安全设计提供理论支持。  相似文献   

2.
齐创  邝男男  姜成龙  林春景  张亚军 《电源技术》2021,45(10):1269-1273
针对锂离子电池热扩散问题,以18650三元锂离子电池为研究对象,搭建了模组的热扩散模型,研究了模组中不同位置单体触发热失控后对整个模组热扩散的影响.基于锂离子电池热失控反应机理和热传导机理建立了单体电池在绝热条件下的热失控模型,并通过设计相应试验验证模型的准确性,仿真结果与试验结果吻合较好.以单体电池热失控模型为基础,搭建模组热扩散模型,研究了模组中不同位置单体触发热失控对模组热扩散的影响.结果表明:中心位置单体触发热失控,热失控行为呈放射状向周围扩散,且每次都是两个单体电池一起发生热失控,在40 s左右,模组一侧的电池全部达到热失控触发温度;边缘位置单体触发热失控,热失控行为依次向周围扩散,且每次只有一个单体发生热失控,大约50 s的时间,模组一侧的电池全部达到热失控触发温度.最后,基于热扩散模型研究了不同隔热材料对模组热扩散速率延缓的作用.  相似文献   

3.
分别对软包三元和磷酸铁锂锂离子电池模组进行了热失控扩展试验研究。采集电池电压、温度等特征参数,研究锂离子电池在加热触发热失控时的特点及热失控在锂离子电池间传播的特征。对比两款电池的热失控特性及热失控扩展特性,结果表明:试验条件下,三元锂离子电池热失控时释放能量速度快,释放能量集中,更容易发生热失控扩展。  相似文献   

4.
锂离子电池安全性研究至关重要,目前主流的4.4 V高电压钴酸锂电池具有更高的能量密度,达到260 Wh/kg以上,所以发生热失控的风险会更大.本文利用加速绝热量热仪对两种品牌公司的高电压钴酸锂软包电池进行热失控研究,评估高电压钴酸锂电池发生热失控的风险,并分析了两种电池发生热失控的行为差异.温度-时间曲线和温度变化率-...  相似文献   

5.
为实现储能电站锂离子电池热失控状况的可靠判断,避免因电池过充热失控导致储能电站火灾,以磷酸铁锂电池作为研究对象,模拟电池过充热失控过程,研究热失控过程中产物情况。同时融合电池本体参数情况提出一种电池热失控判断方法,并分析论证该方法的有效性。结果表明,电池泄压阀开启30 s后环境中会产生大量粒径范围在0~0.3μm的固态粒子产物,且融合热失控产物和电池本体参数的热失控判断方法在实践中具备一定的优势性。  相似文献   

6.
《高电压技术》2021,47(7):2633-2643
针对锂离子电池热扩散防护问题,以50 Ah三元锂离子电池为研究对象,搭建了加热条件下锂离子电池模组的热扩散模型,研究了不同隔热材料和对流换热系数对锂离子电池模组热扩散行为的影响。基于锂离子电池的热失控反应机理和热传导机理建立了单体电池热失控模型,模型误差小于6%。以单体电池热失控模型为基础,搭建了5个电池并联的电池模组热扩散模型,并设计相关试验验证了模型的准确性,仿真结果与试验结果相符。利用热扩散模型研究了隔热材料和对流换热系数对电池热扩散行为的影响。结果表明:隔热材料的导热系数越大,模组中第1个电池触发热失控的时间越长,电池模组发生热扩散的时间越短,热失控延滞期减小;对流换热系数越大,电池模组发生热扩散的时间越长,热失控延滞期增加。  相似文献   

7.
锂离子电池储能在电化学储能领域占据了绝对主导地位,因此,针对锂电池储能电站的火灾问题,提出在锂离子电池热失控初期、热失控阶段和热失控后期的预防措施和对储能电站的消防改进建议。  相似文献   

8.
锂离子电池是储能系统的重要组成部分,但储能系统用三元锂离子电池的热失控火灾特性尚未厘清,严重制约了此类储能设施消防控灭火手段的应用和储能行业的安全发展。通过储能系统用三元锂离子电池的热失控实验、量热实验和热扩展实验,研究了电池单体热失控和电池模组热扩展的发展规律。实验结果表明,储能系统用三元锂离子电池在热失控后会直接起火燃烧,释放出大量可燃气体,燃爆剧烈,会形成持续的喷射火,电池单体热失控容易触发相邻电池单体发生热失控,形成链式反应。  相似文献   

9.
随着电动汽车的快速发展,锂离子电池得到了广泛应用,而锂离子电池的安全问题是电动汽车发展的基础.文中针对锂离子电池热失控的研究展开了全面综述.首先概述了电池在不同原因下引发的热失控,其中电池内部短路以及电池过充电是引发热失控的主要原因.同时重点总结了电池的整个热失控过程,包括单体电池的热失控机理以及热失控在电池组内的扩散...  相似文献   

10.
近年来,锂离子电池热失控引发的火灾事故频发,严重制约了锂电池在储能等方面的应用和发展。二氧化碳具有良好的绝缘性能,适用于电气设备火灾灭火。该文首次提出利用低压储存的低温二氧化碳抑制锂电池热失控引发火灾的方法,开展低压二氧化碳和3种典型常规灭火剂(高压二氧化碳、七氟丙烷、细水雾)抑制过充引发的135 Ah三元锂电池火灾特性的对比研究。采用12~15 kg灭火剂,喷射时间为37~38 s时,所有灭火剂均能扑灭锂电池火灾。其中,低压二氧化碳灭火时间与高压二氧化碳灭火时间相近(7~8 s),七氟丙烷灭火时间较短(5 s),细水雾灭火时间最长(23s);对比灭火剂喷射前后电池表面的温度差,低压二氧化碳冷却电池的效果(温度差302.6℃)比高压二氧化碳(温度差176.8℃)和七氟丙烷(温度差119.6℃)更好,和细水雾(温度差303.8℃)相当。分析各种灭火剂的灭火机理和热量交换,低压二氧化碳主要通过窒息、隔绝和冷却灭明火,且由于汽化热大,吸热性能强,抑制电池热失控效果好。研究表明:低压二氧化碳兼具好的灭火和降温抑制电池热失控的能力,在锂电池火灾防治方面具有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号