首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
We review the anomalous behavior of solid 4He at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in 4He. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid 4He. Our proposed glass model for solid 4He has several implications: (1) The anomalous properties of 4He can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid 4He is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich 4He crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in 4He.  相似文献   

3.
The complex shear modulus of solid 4He exhibits an anomaly in the same temperature region where torsion oscillators show a change in period. We propose that the observed stiffening of the shear modulus with decreasing temperature can be well described by the response of glassy components inside of solid 4He. Since glass is an anelastic material, we utilize the viscoelastic approach to describe its dynamics. The viscoelastic component possesses an increasing relaxation as temperature decreases. The response functions thus derived are identical to those obtained for a glassy, time-delayed restoring back-action. By generalizing the viscoelastic equations for stress and strain to a multiphase system of constituents, composed of patches with different damping and relaxation properties, we predict that the maximum change of the magnitude of the shear modulus and the maximum height of the dissipation peak are independent of an applied external frequency. The same response expressions allow us to calculate the temperature dependence of the shear modulus?? amplitude and dissipation. Finally, we demonstrate that a Vogel-Fulcher-Tammann (VFT) relaxation time is in agreement with available experimental data.  相似文献   

4.
We have developed a double resonance compound torsional oscillator for studying non-classical rotational inertia (NCRI) of solid 4He at two different frequencies. The torsional oscillator consists of two beryllium copper torsion members, and two masses. The two masses rotate in phase in the first mode and out of phase in the second mode at resonance frequencies, 496 Hz and 1173 Hz, respectively. Samples of solid 4He (commercial grade with 3He impurity level less than 1 ppm) are grown with the blocked capillary method at pressures between 27 and 42 bar. Temperature dependences of NCRI signals at two different frequencies are observed in identical solid 4He at 37 bar.   相似文献   

5.
The excitement following the initial report of supersolid behavior for 4He embedded in porous Vycor glass has been tempered by the realization that many of the early supersolid observations were contaminated by effects arising from an anomaly in the elastic properties of solid 4He. In an attempt to separate dynamic elastic effects from a true supersolid signal, we employed a torsional oscillator with two eigen-frequencies to study the 4He-Vycor system. We found that frequency-dependent elastic signals can entirely account for the observed period shift signals. Although, we conclude that supersolid does not exist for the 4He-Vycor case, the question of its presence in bulk samples remains open. In our current experiments we apply the two-frequency test to bulk samples of solid 4He. Again we find a frequency-dependent contribution arising from elastic effects; however, in some cases we also find a small frequency-independent contribution, which may indicate the existence of a remnant supersolid phase. Given the history of this subject such results must be treated with caution.  相似文献   

6.
A new type of torsional oscillator for experiments in the high magnetic field of 12 Tesla is reported. A beryllium copper alloy (BeCu25) was chosen as a torsion rod for its reliable mechanical properties. Two non-metallic materials were tested for a torsion head except a small amount of silver paste for the electrode. For a quartz glass head, liquid3He was successfully cooled down below 0.5 mK at 12 Tesla. The quality factor was 2 × 104 even at the highest field. On the other hand, a Stycast 1266 head in a field of 12 Tesla caused a large temperature difference between the liquid in the head and in the open space, in spite of a comparable quality factor with the quartz head.  相似文献   

7.
We have performed the simultaneous measurement of torsional oscillator and NMR in solid 4He with 10 ppm of 3He at 3.6 MPa. In this solid, NCRI response appears below about 400 mK. NMR measurement shows that there is the same kind of phase-separated 3He cluster which is found in our previous measurement in solid 4He with over a hundred ppm of 3He. When we warm the solid above the phase separation temperature, the cluster disappears gradually. Below and above the phase separation temperature, the distribution of 3He atoms changes significantly with long time constant, which is as long as a day. However, even in such a long time span, we do not observe any systematic changes in the torsional oscillator response. This result suggests that the phase separation and related changes of the distribution of 3He is not directly related to the impurity effect of the NCRI response.  相似文献   

8.
No Heading Recent torsional oscillator measurements on solid 4He confined in Vycor glass at 62 bars show supersolid response, an abrupt drop in rotational moment of inertia, at 175 mK1. We have investigated the pore-size dependence of the supersolid behavior by confining solid 4He in a different porous host, porous gold, of a considerably larger pore diameter. When solid 4He in porous gold is cooled below 0.2 K a sharp drop in the resonant period is found. The supersolid response exhibits a strong dependence on the amplitude of oscillation.PACS numbers: 67.80–s. 67.80 Mg., 0.5.70.Fh, 05.30.Jp  相似文献   

9.
Measurements on hysteretic response of compound torsional oscillator containing annular-shaped solid 4He samples were carried out by varying the oscillator drive amplitude starting from high to low and then back up to the initial high value. Hysteresis in the oscillator frequency and amplitudes were observed only below an onset temperature. The hysteresis onset temperature (T H ) did not depend on the oscillator frequency, width of the sample annulus, annealing and refreezing after melting. A systematic increase in T H was observed as the 3He impurity concentration in solid 4He samples was increased. The dependence of T H on 3He impurity concentration followed approximately that of the dissipation peak temperatures. Possible relationships of the observed hysteresis phenomena with models of solid 4He dynamics based on freezing of a vortex liquid and dislocation motion are discussed.  相似文献   

10.
This paper reviews recent findings of novel phenomena in 4He confined to a nano-porous glass. We examined pressure–temperature (P-T) phase diagram of 4He confined in a porous Gelsil glass that had nanopores 2.5 nm in diameter, by torsional oscillator and pressure studies. The obtained phase diagram is fairly unprecedented the superfluid transition temperature approaches zero at 3.4 MPa, and a novel nonsuperfluid phase exists between the superfluid and solid phase. These observations indicate that the confined 4He undergoes a superfluid-nonsuperfluid-solid quantum phase transition at zero temperature. We propose that the nonsuperfluid phase may be a localized Bose-condensed state in which global phase coherence is destroyed by a strong correlation between the 4He atoms or by a random potential. 4He in nanospace is an excellent model system for studying a strongly correlated Bose liquid and solid in a confinement potential.  相似文献   

11.
The shear modulus of solid 4He increases below 200 mK, with the same dependence on temperature, amplitude and 3He concentration as the frequency changes recently seen in torsional oscillator (TO) experiments. These have been interpreted as mass decoupling in a supersolid but the shear modulus behavior has a natural explanation in terms of dislocations. This paper summarizes early ultrasonic and elastic experiments which established the basic properties of dislocations in solid helium. It then describes the results of our experiments on the low temperature shear modulus of solid helium. The modulus changes can be explained in terms of dislocations which are mobile above 200 mK but are pinned by 3He impurities at low temperature. The changes we observe when we anneal or stress our crystals confirm that defects are involved. They also make it clear that the shear modulus measured at the lowest temperatures is the intrinsic value—it is the high temperature modulus which is reduced by defects. By measuring the shear modulus at different frequencies, we show that the amplitude dependence depends on stress in the crystal, rather than reflecting a superfluid-like critical velocity. The shear modulus changes shift to lower temperatures as the frequency decreases, showing that they arise from a crossover in a thermally activated relaxation process rather than from a true phase transition. The activation energy for this process is about 0.7 K but a wide distribution of energies is needed to fit the broad crossover. Although the shear modulus behavior can be explained in terms of dislocations, it is clearly related to the TO behavior. However, we made measurements on hcp 3He which show essentially the same modulus stiffening but there is no corresponding TO anomaly. This implies that the TO frequency changes are not simply due to mechanical stiffening of the oscillator—they only occur in the Bose solid. We conclude by pointing out some of the open questions involving the elastic and TO behavior of solid helium.  相似文献   

12.
Using a novel SQUID-based torsional oscillator (TO) technique to achieve increased sensitivity and dynamic range, we studied TO’s containing solid 4He. Below ~250?mK, the TO resonance frequency f increases and its dissipation D passes through a maximum as first reported by Kim and Chan. To achieve unbiased analysis of such 4He rotational dynamics, we implemented a new approach based upon the generalized rotational susceptibility $\chi_{{}^{4}\mathrm{He}}^{ - 1}(\omega,T)$ . Upon cooling, we found that equilibration times within f(T) and D(T) exhibit a complex synchronized ultraslow evolution toward equilibrium indicative of glassy freezing of crystal disorder conformations which strongly influence the rotational dynamics. We explored a more specific $\chi_{{}^{4}\mathrm{He}}^{ -1}(\omega,\tau(T))$ with τ(T) representing a relaxation rate for inertially active microscopic excitations. In such models, the characteristic temperature T ? at which df/dT and D pass simultaneously through a maximum occurs when the TO angular frequency ω and the relaxation rate are matched: ωτ(T ?)=1. Then, by introducing the free inertial decay (FID) technique to solid 4He TO studies, we carried out a comprehensive map of f(T,V) and D(T,V) where V is the maximum TO rim velocity. These data indicated that the same microscopic excitations controlling the TO motions are generated independently by thermal and mechanical stimulation of the crystal. Moreover, a measure for their relaxation times τ(T,V) diverges smoothly everywhere without exhibiting a critical temperature or velocity, as expected in ωτ=1?models. Finally, following the observations of Day and Beamish, we showed that the combined temperature-velocity dependence of the TO response is indistinguishable from the combined temperature-strain dependence of the 4He shear modulus. Together, these observations imply that ultra-slow equilibration of crystal disorder conformations controls the rotational dynamics and, for any given disorder conformation, the anomalous rotational responses of solid 4He are associated with generation of the same microscopic excitations as those produced by direct shear strain.  相似文献   

13.
No Heading Superfluid properties of 4He adsorbed in uniform straight pore 1.8 nm in diameter were studied using a torsional oscillator. In the pore, the first one or two layers of adsorbed. 4He are solid, therefore the pore diameter is effectively reduced to about 1.1 or 0.4 nm. In order to investigate whether 4He becomes superfluid in such a narrow pore, we performed the oscillator experiments for two cases: 4He is adsorbed (1) on the bare substrate and (2) on the pore completely filled with N2 atoms. In the latter case, only superfluid film coating the surface of the substrate grain can be detected. Compared with this case, an additional superfluid signal originating from 4He in the pore is observed for the bare substrate. This strongly suggests that 4He in the pore is superfluid.PACS numbers: 67.40.–w, 67.70.+n  相似文献   

14.
In recent torsional oscillator experiments by Kim and Chan (KC), a decrease of rotational inertia has been observed in solid 4He in porous materials (Kim, E., Chan, M.H.W. in Nature 427:225, 2004; J. Low Temp. Phys. 138:859, 2005) and in a bulk annular channel (Kim, E., Chan, M.H.W. in Science 305:1941, 2004). This observation strongly suggests the existence of “non-classical rotational inertia” (NCRI), i.e. superflow, in solid 4He. In order to study such a possible “supersolid” phase, we perform torsional oscillator experiments for cylindrical solid 4He samples. We have observed decreases in rotational inertia below 200 mK for two solid samples (pressures P=4.1 and 3.0 MPa). The observed NCRI fraction at 70 mK is 0.14%, which is about 1/3 of the fraction observed in the annulus by KC. Our observation is the first experimental confirmation of the possible supersolid finding by KC.  相似文献   

15.
We report experiments of the torsional oscillator to observe the superfluid transition in 4 He films in porous glass (the pore diameter is 1m). Stability and reproducibility of the oscillator, which quite often is problematic in previous experiments, is essential for a quantitative analysis of observations in different conditions. It follows that the friction of the superfluid films and the energy dissipation of the solid films are derived from comparisons of measurements for different film thickness.  相似文献   

16.
We present a new simplified derivation of the effect of lattice relaxation that accompanies the quantum tunneling of 3He impurities in solid 4He on the nuclear spin-lattice relaxation of the 3He impurities for very low impurity concentrations. As a result of the larger zero point motion of the 3He impurity compared to the 4He atoms, a significant lattice distortion accompanies the impurity as it moves through the lattice and the dynamics of the impurity depends on both the interaction energy between two 3He atoms and on the relaxation of the lattice for the tunneling impurity. Using a phenomenological model for the lattice relaxation we compare the nuclear spin-lattice relaxation rates observed at low temperatures with the dependence on temperature expected for a 4He lattice relaxation comparable to that observed by Beamish et al. (Phys. Rev. Lett. 96:195304, 2006).  相似文献   

17.
The existence of “Non-Classical Rotational Inertia (NCRI)” in solid 4He below 0.2?K has been controversial and interpreted by a number of different theories. We report on torsional oscillator measurements for 4He in a nanoporous Gelsil glass, which has a network of nanopores with 3.5?nm in diameter. In addition to the usual “low-T NCRI” with an onset temperature 0.15?K, we find a larger decrease in rotational moment of inertia in a broad range of temperature from 0.2 to 1.9?K. This “high-T inertial anomaly” is accompanied with multiple dissipation peaks, but has no dependence on torsional oscillation velocity unlike the low-T NCRI. Since the high-T anomaly is observed also in confined liquid states, it originates in amorphous solid 4He layer near the pore wall. Our result shows that different types of supersolid—like phenomena, i.e. inertial anomalies, can coexist in a single 4He sample, even with genuine superfluidity of liquid 4He.  相似文献   

18.
Torsional oscillator (TO) experiments involving solid \(^{4}\) He confined in the nanoscale pores of Vycor glass showed anomalous frequency changes at temperatures below 200 mK. These were initially attributed to decoupling of some of the helium’s mass from the oscillator, the expected signature of a supersolid. However, these and similar anomalous effects seen with bulk \(^{4}\) He now appear to be artifacts arising from large shear modulus changes when mobile dislocations are pinned by \(^{3}\) He impurities. We have used a TO technique to directly measure the shear modulus of the solid \(^{4}\) He/Vycor system at a frequency (1.2 kHz) comparable to that used in previous TO experiments. The shear modulus increases gradually as the TO is cooled from 1 K to 20 mK. We attribute the gradual modulus change to the freezing out of thermally activated relaxation processes in the solid helium. The absence of rapid changes below 200 mK is expected since mobile dislocations could not exist in pores as small as those of Vycor. Our results support the interpretation of a recent TO experiment that showed no anomaly when elastic effects in bulk helium were eliminated by ensuring that there were no gaps around the Vycor sample.  相似文献   

19.
Torsional oscillator experiments on solid 4He have been interpreted as showing mass decoupling similar to what one observes in a superfluid. Within the context of a two-component model for the supersolid one would expect the appearance of a second, slow acoustic mode. We have searched for this mode using an acoustic resonance technique. We have used porous membranes in bulk solid 4He analogous to a second sound experiment in the superfluid. We also investigated solid helium in Vycor using piezoelectrically driven titanium diaphragms (analogous to a fourth sound experiment in the liquid). Our measurements have shown no indication of an additional sound mode in the kHz range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号