共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
2004年以来,以石墨烯为代表的新型二维纳米材料引起了全球范围内的研究热潮,在光电子、生物、能源等领域展现出了巨大的应用潜力。过渡金属硫族化合物因平面内结合力较强、平面外结合力较弱以致可以将其剥离成单个细胞厚度的二维层状纳米材料,且该材料具备类石墨烯物理化学性质而被誉为\"无机石墨烯\"。关于二维过渡金属硫族化合物纳米材料的研究已有多年,众多研究表明,因其具有独特的结构和特性,在光电器件、催化及能源存储领域有着广阔的应用前景。基于该领域研究的最新进展,综述了二维过渡金属硫族化合物纳米材料在能源领域中的应用,并对目前相关研究领域的发展趋势进行了总结和展望。 相似文献
4.
5.
6.
按照K2Se:K2Te2:MnCl2@4H2O:SnCl2 2H2O:Se:乙二胺(en)=3.8:1:2:2:6:270的摩尔比配料,采用溶剂热法使原料混合物在180℃反应7 d,得到黑色块状晶体[Mn(en)3]2@Sn2Se4Te2.属于三斜晶系,空间群为P-1,晶胞参数a=0.91428(7)nm,b=1.02781(7)nm,c=1.15745(8)nm,α=94.632(2)°,β=100.944(2)°,γ=115.918(1)°,V=0.94382(12)nm3,Z=1.晶体由[Mn(en)3]2+和(Sn2Se4Te2)4-堆积而成.具有Zintl结构的特征半导体[Mn(en)3]2@Sn2Se4Te2的光学能隙(Eg)为2.2 eV.当温度低于190℃时,[Mn(en)3]2@Sn2Se4Te2晶体是稳定的.详细讨论了这类化合物的组成对晶体结构和光吸收性能的影响. 相似文献
7.
以乙二胺为修饰剂,采用水热法合成了不同掺杂比例的Zn_(1-x)Mn_xS(x=0,0.02,0.05,0.07)稀磁半导体材料,并通过XRD、FESEM、HRTEM、XEDS、光致发光光谱(PL)和振动样品磁强计(VSM)对样品的晶体结构、形貌、光学性能和磁学性能进行表征。实验结果表明:本方法制备的所有样品具有结晶良好的纤锌矿结构,没有杂峰出现;样品形貌为一维的纳米棒状,分散性良好;掺杂的Mn2+以替代Zn2+的形式进入到ZnS晶格中,随着Mn掺杂量的增加晶格常数呈现收缩趋势;样品的PL光谱存在明显的紫外发光峰、蓝光发光峰和绿光发光峰,而且峰位发生蓝移;同时一定量的Mn掺杂ZnS纳米晶在室温条件下具有铁磁性。 相似文献
9.
10.
11.
The electronic band-edges of lead chalcogenides PbY and tin chalcogenides SnY (where Y = S, Se, and Te) are investigated by the means of a full-potential linearized augmented plane wave (FPLAPW) method and the local density approximation (LDA). All six chalcogenide binaries have similar electronic structures and density-of-states, but there are differences in the symmetry of the band-edge states at and near the Brillouin zone L-point. These differences give the characteristic composition, pressure, and temperature dependences of the energy gap in Pb1−xSnxY alloys.We find that: (1) SnY are zero-gap semiconductors Eg = 0 if the spin–orbit (SO) interaction is excluded. The reason for this is that the conduction band (CB) and the valence band (VB) cross along the Q ≡ LW line. (2) Including the SO interaction splits this crossing and creates a direct gap along the Q-line, thus away from the L symmetry point. Hence, the fundamental band gap Eg in SnY is induced by the SO interaction and the energy gap is rather small Eg ≈ 0.2–0.3 eV. At the L-point, the CB state has symmetric and the VB state is antisymmetric thereby the L-point pressure coefficient ∂Eg(L)/∂p is a positive quantity. (3) PbY have a direct band gap at the L-point both when SO coupling is excluded and included. In contrast to SnY, the SO interaction decreases the gap energy in PbY. (4) Including the SO interaction, the LDA yields incorrect symmetries of the band-edge states at the L-point; the CB state has and the VB state has symmetry. However, a small increase of the cell volume corrects this LDA failure, producing an antisymmetric CB state and a symmetric VB state, and thereby also yields the characteristic negative pressure coefficient ∂Eg(L)/∂p in agreement with experimental findings. (5) Although PbY and SnY have different band-edge physics at their respective equilibrium lattice constants, the change of the band-edges with respect to cell volume is qualitatively the same for all six chalcogenides. (6) Finally, in the discussion of the symmetry of the band edges, it is important to clearly state the chosen unit cell origin; a shift by (a/2,0,0) changes the labeling of the irreducible representations. 相似文献
12.
We describe the growth of modulation-doped ZnSe/(Zn,Cd)Se quantum wells on (110) GaAs substrates. Unlike the well-known protocol for the epitaxy of ZnSe-based quantum structures on (001) GaAs, we find that the fabrication of quantum well structures on (110) GaAs requires significantly different growth conditions and sample architecture. We use magnetotransport measurements to confirm the formation of a two-dimensional electron gas in these samples, and then measure transverse electron spin relaxation times using time-resolved Faraday rotation. In contrast to expectations based upon known spin relaxation mechanisms, we find surprisingly little difference between the spin lifetimes in these (110)-oriented samples in comparison with (100)-oriented control samples. 相似文献
13.
K. C. Ku S. H. Chun W. H. Wang W. Fadgen D. A. Issadore N. Samarth R. J. Epstein D. D. Awschalom 《Journal of Superconductivity》2005,18(2):185-188
We describe the growth of modulation-doped ZnSe/(Zn,Cd)Se quantum wells on (110) GaAs substrates. Unlike the well-known protocol for the epitaxy of ZnSe-based quantum structures on (001) GaAs, we find that the fabrication of quantum well structures on (110) GaAs requires significantly different growth conditions and sample architecture. We use magnetotransport measurements to confirm the formation of a two-dimensional electron gas in these samples, and then measure transverse electron spin relaxation times using time-resolved Faraday rotation. In contrast to expectations based upon known spin relaxation mechanisms, we find surprisingly little difference between the spin lifetimes in these (110)-oriented samples in comparison with (100)-oriented control samples. 相似文献
14.
Optical and EPR characterization of Cr and Fe doped ZnSe crystals annealed in Zn vapor revealed a strong bleaching of the divalent state of transition metal ions. Photo induced EPR kinetics were studied in 20–80 K temperature range. Analysis of time-dependent data reveals Cr1+ signal rise time decreases with increasing temperature. The non-exponential decay of Cr1+ concentration were analyzed using Auger-type recombination process. The photoluminescence quantum yield of Cr2+ ions at 5E(D) → 5T2(D) mid-IR transition excited via chromium ionization process was measured to be close to 100%. 相似文献
15.
A. Manzoli 《Thin solid films》2007,515(17):6860-6866
The negative potential sweep of a polycrystalline Au electrode in a solution containing 5 × 10− 4 mol L− 1 SeO2, 0.2 mol L− 1 Zn(ClO4)2 and 0.5 mol L− 1 HClO4 was analyzed at 0.05 V s− 1. The simultaneously collected voltammetric and nanogravimetric responses allowed to analyze the several electrochemical processes occurring in the studied range of potential, finishing with the formation of a thin film of ZnSe. The association of results obtained using both techniques was applied to identify the species involved in the AuO reduction as (AuO)2H2SeO3, which was desorbed during the oxide reduction with a mass variation much larger than that one observed in the supporting electrolyte. Initially, the Se(IV) reduction results in Seads coverage, followed by a further reduction to H2Se, which is a gas and desorbs from the electrode surface. Finally, the Zn(II) reduction inhibits the H2Se formation and generates a thin film of ZnSe, as the final coating. The strong dependence of the nature of reacting compound and the mass as well as the charge variations allowed to postulate a reaction mechanism. 相似文献
16.
《Journal of Experimental Nanoscience》2013,8(14):1082-1092
White light generation is achieved by single-step co-doping of copper and manganese into the robust ZnSe quantum dots (QDs) which were synthesised using a wet chemical route. Photoluminescence (PL) emission spectra revealed three peaks related to blue (ZnSe), green (copper related) and orange (manganese related). The PL spectra indicated no surface and/or trap state related emission. Photoluminescence excitation (PLE) measurements confirmed co-doping of copper and manganese in the same QD. PLE spectra recorded with emission wavelength fixed at copper and manganese showed a band edge at the same position, indicating the incorporation of both copper and manganese in the same QD. Time-resolved PL measurements suggest an atomic like nature of Mn and Cu in ZnSe QDs. 相似文献
17.
18.
Kedir Ebrahim Ahmed Dong-Hau Kuo Worku Lakew Kebede 《Advanced Powder Technology》2019,30(8):1664-1671
Heterojunction construction with low band gap materials is an effective way of utilizing UV light active materials under visible light irradiation. Here, we report the synthesis of Bi2(O,S)3/Zn(O,S) heterostructure using simple solvothermal method without surfactant. The catalysts were investigated with different characterization techniques. All the composite catalysts showed high light absorption capacity in the whole visible light spectrum. The catalytic activity of the catalysts was evaluated by Cr(VI) reduction. While pure Zn(O,S) catalyst showed no significant Cr(VI) reduction, higher photocatalytic activity than individual components were exhibited after heterojunction construction with Bi2(O,S)3. 20-BiZnOS catalyst with Bi/Zn molar percentage of 20% showed the best photocatalytic activity among the composites with 99.5% Cr(VI) reduction within 12 min under visible light irradiation. Heterojunction formation between Bi2(O,S)3 and Zn(O,S) nanoparticle, and selective adsorption of Cr(VI) and desorption of Cr(III) on the surface of 20-BiZnOS composite catalyst were ascribed to the enhanced photocatalytic activity of the composite catalyst. 相似文献
19.
Shape control of doped semiconductor nanocrystals (d-dots) 总被引:1,自引:0,他引:1
Ranjani Viswanatha David M. Battaglia Mark E. Curtis Tetsuya D. Mishima Matthew B. Johnson Xiaogang Peng 《Nano Research》2008,1(2):138-144
Formation of Mn2+-doped ZnSe quantum dots (Mn:ZnSe d-dots) with both branched and nearly spherical shapes has been studied. Structure analysis
indicates that the Mn2+ dopants were localized in the core of a branched nanocrystal. The growth of branched d-dots, rather than spherical ones,
was achieved by simply varying the concentration of two organic additives, fatty acids, and fatty amines. The photoluminescence
properties of the branched nanocrystals were explored and compared with those of the nearly spherical particles.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献