首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Sphingomonas yanoikuyae B1 is extremely versatile in its catabolic ability. An insertional mutant strain, S. yamoikuyae EK504, which is unable to grow on naphthalene due to the loss of 2-hydroxychromene-2-carboxylate isomerase activity, was utilized to investigate the role of this enzyme in the degradation of anthracene by S. yanoikuyae B1. Although EK504 is unable to grow on anthracene, this strain could transform anthracene to some extent. A metabolite in the degradation of anthracene by EK504 was isolated by high-pressure liquid chromatography (HPLC) and was identified as 6,7-benzocoumarin by UV-visible, gas-chromatographic, HPLC/mass-spectrometric, and 1H nuclear magnetic resonance spectral techniques. The identification of 6,7-benzocoumarin provides direct chemical and genetic evidence for the involvement of nahD in the degradation of anthracene by S. yanoikuyae B1.  相似文献   

4.
5.
A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error.  相似文献   

6.
7.
8.
Bacteriophage T7 4A' protein is a DNA helicase that unwinds DNA in a reaction coupled to dTTP hydrolysis. To understand better its mechanism of DNA unwinding, we characterized a set of 4A' mutant proteins (Washington, M. T., Rosenberg, A. H., Griffin, K., Studier, F. W., and Patel, S. S. (1996) J. Biol. Chem. 271, 26825-26834). We showed here, using single turnover DNA unwinding assays, that the 4A'/E348K mutant protein had the unusual property of unwinding DNA (with a 5-6-fold slower rate) despite a significant defect in its dTTPase activity (a 25-30-fold slower rate). Comparing the DNA unwinding rates to the dTTPase rates, we estimated the DNA unwinding efficiencies of both wild-type (about 1 base pair unwound per dTTP hydrolysis) and mutant (4 to 6 base pairs unwound per dTTP hydrolysis). Thus the mutant had a 4-6-fold improvement in its DNA unwinding efficiency over that of the wild-type. We believe that this mutant undergoes less slippage (uncoupled dTTP hydrolysis) than the wild-type. We speculate that nature has selected for a high rate of DNA unwinding rather than a high efficiency of DNA unwinding. Thus even though the mutant is more efficient at DNA unwinding, the wild-type probably was selected because it unwinds DNA faster.  相似文献   

9.
Phage lambda encodes two recombination proteins that are required for homologous recombination in a recA- host strain. Of these two recombination proteins, one is an exonuclease whose action on double-stranded DNA produces 3' single-stranded ends; the other, called beta protein, is a DNA binding protein that promotes the renaturation of complementary single strands. The enzymes of phage lambda provide a model for understanding a recombination pathway called "single-strand annealing". Further investigation of the binding of beta protein to DNA has revealed a new mechanism of renaturation. As reported before, beta protein binds directly to single-stranded DNA, but not to double-stranded DNA. However, in the experiments reported here, we observed that beta protein bound more strongly to a presumed intermediate in the renaturation reaction that beta itself catalyzed, and beta thereby protected all of a renatured duplex 83-mer oligonucleotide from nuclease digestion.  相似文献   

10.
This study compares the biochemical responses in T cells activated with the CD28 ligands B7-1 and B7-2. The patterns of tyrosine phosphorylation induced in T cells by these two CD28 ligands are identical, but clearly different from the tyrosine phosphorylation induced by the T cell receptor (TCR). The TCR regulates protein complexes mediated by the adapter Grb2 both in vivo and in vitro. In contrast, there is no apparent regulation of in vivo Grb2 complexes in response to B7-1 or B7-2. Rather, B7-1 and B7-2 both induce tyrosine phosphorylation of a different adaptor protein, p62. The regulation of p62 is a unique CD28 response that is not shared with the TCR. These data indicate that B7-1 and B7-2 induce identical tyrosine kinase signal transduction pathways. The data show also that the TCR and CD28 couple to different adapter proteins, which could explain the divergence of TCR and CD28 signal transduction pathways during T cell activation.  相似文献   

11.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   

12.
The influence of acetamide (AA) on the native DNA molecule conformation has been studied by methods of flow birefringence and viscometry. On one hand, it was shown that hydrodynamical and optical behaviour of the macromolecule at extremely low additions of AA is qualitatively the same as in the presence of nonelectrolytes which stabilize the water structure. On the other hand, the influence of intermediate and large AA concentrations on the native DNA molecule conformation is qualitatively the same as of corresponding urea concentrations, which is known to be a structure-breaker. The influence of AA on the thermostability of the native DNA molecule as well as on the stacking-association constant of adenosine has been studied by a spectrophotometric method. The obtained data confirm the hypothesis of the importance of ion-dipole interactions between nonelectrolytes and the phosphate groups of the DNA molecule.  相似文献   

13.
BACKGROUND: Soluble MHC class I molecules are ubiquitous in human body fluids, including serum, urine, sweat, and cerebrospinal fluid. However, their biological function has remained unresolved. Membrane-derived human soluble MHC molecules (soluble human leukocyte antigen; sHLA) have been shown to induce apoptosis in alloreactive cytotoxic T lymphocytes (CTL). Here we report the efficacy of recombinant soluble HLA-B7 (rsHLA-B7) to modulate T-cell function. METHODS: Primers of HLA-B7 were designed to allow amplification of a cDNA lacking the transmembrane and cytoplasmic domains yielding a truncated gene. rsHLA-B7 molecules were expressed in the human myeloma cell line 721.221 and purified by affinity chromatography using the BB7.7 mouse monoclonal antibody. CTL were generated from peripheral blood lymphocytes derived from healthy blood donors by stimulation with irradiated Epstein Barr virus-transformed HLA-B7-positive B cells. CTL were preincubated with rsHLA-B7, and cytotoxicity and apoptosis were tested according to standard procedure. RESULTS: A total of 2 x 10(6) cells/ml secreted 10 microg/ml rsHLA-B7 as determined by a conformation-dependent ELISA, suggesting that rsHLA-B7 do not require the transmembrane and cytoplasmic regions for proper folding. After purification by affinity chromatography, rsHLA-B7 induced apoptosis in anti-HLA-B7 CTL, but not in anti-HLA-A2-specific, CTL. As a consequence, allorecognition of target cells by the CTL was significantly blocked. CONCLUSION: Recombinant sHLA are sufficient binding cues for T cells, which efficiently induce apoptosis and block allorecognition of target cells by CTL. Thus, recombinant sHLA molecules may become a valuable new modality for specific immunological therapeutic intervention.  相似文献   

14.
15.
The bacteriophage T7 DNA ligase gene was amplified using polymerase chain reaction-based methods and cloned into a T7 promoter-based expression vector. The protein was overexpressed to greater than 15% of total soluble protein and purified to homogeneity, yielding 60-70 mg of protein per liter of bacterial culture. An initial physical and biochemical characterization of the enzyme reveals that it exists as a monomer and can ligate nicked, cohesive, and blunt-ended DNA fragments. Inhibition of the enzyme activity by a nonhydrolyzable ATP analogue was also investigated. The enzyme has been crystallized from methoxypolyethylene glycol. The crystals are of the orthorhombic space group P2(1)2(1)2 and diffract to 2.6 A. The unit cell dimensions are a = 66.1 A, b = 87.6 A, and c = 78.6 A, with one monomer in the asymmetric unit (Vm = 2.77 A3/Da). This is the first member of the DNA ligase family of enzymes to be crystallized.  相似文献   

16.
For viruses made of nucleic acid and protein, the structure of the protein outer shell has, in the past, been found to be uniquely determined by the viral genome. However, here, non-denaturing agarose gel electrophoresis of bacteriophage T7 reveals two states of the mature T7 capsid; the conditions of growth are found to alter the population by T7 of these two electrophoretically defined states. Both states have been previously observed for a genetically altered T7 and they are observed here for wild-type T7. The average electrical surface charge density of a bacteriophage particle (delta) determines its state; the delta of particles in both states is negative. For a given condition of growth, the population of these two states is influenced by the extent to which the major T7 outer shell protein, p10A, is accompanied by its minor readthrough variant, p10B. Comparison of the two electrophoretic states reveals the following. (1) No difference in radius is present in the outer shell (+/-2%). (2) As the pH of electrophoresis is either increased or decreased from neutrality, the state becomes more highly populated for which delta is greater in magnitude (state 1). By changing the pH, some T7 particles are made to change state. (3) Particles in state 1 adsorb less quickly to host cells than do the particles in the alternative state (state 2). This latter observation suggests the hypothesis that state 1 evolved to reduce the probability of re-initiating an infection when conditions are not favorable for growth. This hypothesis is supported by the observation that, as conditions of growth become apparently more unfavorable, progeny increasingly populate state 1.  相似文献   

17.
Bacteriophage T7 DNA can penetrate Syrian hamster embryonic cells after a mandatory initial pretreatment with DEAE-dextran. In 3 h an extracellular complex between T7DNA and the cell monolayer is formed which is equivalent to 105 T7 genomes per cell. During the ensuing 24-48 h of cell growth, an average of 102-103 T7 genomes are transported to the nucleus in 90% of the cells of the culture.  相似文献   

18.
In this work, we addressed the possibility to enhance the "in vitro" generation of CTLs recognizing tumor-associated antigens (TAAs) by using an inactivated recombinant vaccinia virus encoding B7.1 and B7.2 costimulatory molecules (rVV-B7.1/2). Antigen presenting cells (APCs) infected by rVV-B7.1/2 and pulsed with MART-1/Melan-A27-35 HLA-A2.1-restricted peptide induced significantly higher specific cytotoxic activity than peptide-loaded APCs infected by wild-type VV, both in VV-sensitized and naive donors. When APCs were infected with a rVV encoding both MART-1/Melan-A27-35 and B7-1/2 (rVV-B7.1/2-M), a significantly more effective CTL generation was observed as compared with cultures stimulated by APCs infected with a rVV encoding the TAA epitope only (rVV-M). These enhancing effects were detectable irrespective of a previous VV-specific sensitization. Most importantly, fibroblasts, devoid of antigen-presenting capacity upon peptide pulsing or infection with rVV-M, could be turned into effective APCs after infection by rVV encoding TAA epitopes and costimulatory molecules. In these experiments, by using separate recombinant viral constructs, we observed a predominant role of B7-1 as compared with B7-2 in the induction of TAA-specific CTLs. Taken together, our data indicate that replication-incompetent rVV encoding TAA epitopes and costimulatory molecules are able to induce highly effective generation of tumor-specific CTLs. Therefore, these vectors could represent valuable clinical tools for immunotherapy of melanoma patients.  相似文献   

19.
The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号