首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crack propagation rate, da/dN, and crack tip closure stress, σcc, in part-through crack fatigue specimens of aluminum alloys are drastically affected by gaseous environments. The present studies indicate that the crack closure reflects the influence of the environment on the plastic deformation at the crack tip, and, therefore, on the crack propagation rates. Postulating that da/dN is mainly determined by ΔKeff ∝ (σmaxcc) (instead of ΔK ∝ (σmaxmin), as is done traditionally) leads to the relationship da/dN = A(ΔKeff)n in which A and n are virtually independent of the gaseous environment. The exponents are n ≈ 3.3 for Al 7075 T651 and n ≈ 3.1 for Al 2024 T351, respectively.  相似文献   

2.
The fatigue crack propagation characteristics of several rotor and wheel materials that are commonly used in rotating components of steam turbines were investigated. Particular emphasis was placed on the behaviour at near-threshold growth rates, ie below 10?5 mm/cycle, approaching the fatigue-crack propagation threshold, ΔKth. The lifetimes of the cracks of interest lie mostly in this region, and it is also the region where few data are available.The effects of load ratio on the fatigue crack growth rates were examined, as well as the tensile, Charpy V-notch and fracture toughness properties of the rotor and wheel materials. The relationship between fatigue crack propagation behaviour and fractographic features was examined. Fatigue crack growth rate data, da/dN vs stress intesity range ΔK, were fitted with a four parameter Weibull survivorship function. This curve fitting can be used for life estimation and establishment of ΔKth. The results show that load ratio and microstructure play a role in determining the fatigue crack threshold and fatigue crack growth behaviour.  相似文献   

3.
Accumulative damage model based on the hysteresis strain energy density is proposed for predicting fatigue crack growth. Investigated is the application of sinusoidal loading on an edge crack whose growth rates are obtained by specifying the number of cycles, ΔN, for each growth step. The corresponding increment of crack growth, Δa, is calculated by having the accumulated local strain energy density to reach certain critical value, (dW/dV)c. As it is to be expected, each growth increment Δa increases up to the point of unstable rapid fracture. The growth rate da/dN versus a data are generated from the nonlinear incremental theory of plasticity. Because of the complexities involved in the stress and subcritical crack growth analysis, the finite element procedure is adopted such that the grid pattern is readjusted for each step of crack growth. Results for the edge crack specimen are displayed graphically and compared with those for the center cracked specimen made of the same material. The different growth characteristics are discussed and expected because material damage by fatigue is sensitive to changes in load history, specimen geometry and crack configuration. Insight into these nonlinear effects provides a means for establishing the range of applicability of the linear fatigue growth models. Discussed in particular are the da/dN vs δk1 and AS relations where the linear theory of elasticity is used to calculate ΔK1 and ΔS.  相似文献   

4.
The concept of fatigue-crack propagation is discussed as it relates to life prediction. Since the use of propagation concepts assumes the presence of a minimum detectable initial flaw size this concept is discussed as it relates to the fatigue process. The relative roles of fatigue-crack initiation and propagation are presented. The acquisition of data is discussed and is then followed by a brief discussion of the variables that influence fatigue-crack propagation. A detailed discussion of the development of fatigue-crack growth ‘laws’ is then presented. These are then generalized to three forms, viz.: da/dN = C1(Sa) (1) da/dN = C2S(a)n (2) da/dN = C3f(K)n (3) Examples of the use of these crack growth ‘laws’ and the knowledge of fracture mechanics then is presented to illustrate the application of fatigue-crack growth concepts to:Predict life; establish greater reliability; select materials: improve design; establish inspection and maintenance intervals.The paper is concluded with a brief discussion of the needs for further knowledge and understanding to aid the science and engineering community in better utilization of engineering materials.  相似文献   

5.
Fatigue crack propagation at low stress intensities has been studied in two low alloy steels in a variety of environments with particular emphasis being placed on the influence of stress ratio and strength level. It was found that fatigue crack growth rates are lower and threshold stress intensities (ΔK0) are higher in vacuum than in humid, laboratory air but, in dry gaseous environments (argon, hydrogen and air) and at low stress ratio (R ~ 0.1), crack growth rates are faster and ΔK0 values are lower than in laboratory air. However, the influence of stress ratio is considerably greater in laboratory air than in dry gaseous environments with the result that, at high stress ratio (R ~ 0.8) ΔK0 values are similar in all environments examined. Increasing material strength level resulted in higher, near-threshold crack growth rates and a reduction in ΔK0 in both dry and humid air environments. The results are discussed in terms of the influence of crack closure and environmental effects on fatigue crack growth behaviour. The importance of corrosion debris produced in fatigue cracks at low stress intensities is also discussed.  相似文献   

6.
A study has been made of the influence of load ratio R on fatigue crack propagation behavior and specifically on the value of the fatigue crack growth threshold, ΔK0, in a bainitic 2.25 Cr-1Mo pressure vessel steel tested at 50 Hz in aqueous, and moist and dry gaseous environments. Data are obtained for crack growth in a distilled water environment and are compared to previously published results in air and hydrogen. It is found that in distilled water the dependence of thresholds ΔK0 values on R is far less marked than in moist air and dry hydrogen atmospheres where ΔK0 values decrease sharply with increasing R. Furthermore, whereas in air and hydrogen, the threshold condition is characterized by a constant maximum stress intensity at low load ratios, and a constant alternating stress intensity at high load ratios, no such behavior is observed in water. Based on extensive measurements of crack face oxidation products using scanning Auger speetroscopy and on previous crack closure measurements using ultrasonics techniques, the role of load ratio in influencing near-threshold fatigue behavior is ascribed to mechanisms of crack closure specifically plasticity-induced closure and closure arising from crack face oxide debris. The implications of such plasticity-induced and oxide-induced closure to the load ratio-dependence of near-threshold fatigue behavior in various environments are discussed in detail.  相似文献   

7.
The crack propagation velocity in corrosion fatigue (d a/d N)c were measured on the Ni-Cr-Mo steel quenched and tempered at 473 or 773 K.The steel with high sensitivity to delayed failure reveals the largest (d a/d N)c under square load and the smaller (d a/d N)c under positive saw tooth load. The frequency dependency of crack propagation characteristics indicates that the interaction between hydrogen atoms and the cyclic moving of triaxial position at crack tip acts an important role in the crack propagation mechanism, i.e. hydrogen concentration process controls the crack propagation of the steel.The steel with low susceptibility to delayed failure reveals, on the other hand, the largest (d a/d N)c under the positive saw tooth load but the smallest (d a/d N)c under the square load, i.e. the stress increasing time is important and the hydrogen invasion process is the controlling factor for the crack propagation.  相似文献   

8.
Linear elastic fracture mechanics relates fatigue crack growth with the stress intensity factor at the crack tip. Presence of residual deformations at the tip of a fatigue crack reduces the crack tip stress intensification such that effective stress intensity range ΔKe = U · ΔK. In this paper use of eddy current technique is exhibited to find the values of test value of effective stress range factor Utest. A reasonable comparison between computed and experimental results of U1 and Utest on two Al alloys 6061-T6 and 6063-T6 has recommended the Eddy Current Technology for finding out the values of crack opening stress level under given loading conditions.  相似文献   

9.
Fracture toughness under tensile test and fatigue test on high strength steel at temperature ranging from room temperature to ?180°C were experimentally studied. The value of fracture toughness under fatigue test is considerably tower than that obtained under tensile test.Within the range from room temperature to ?100°C the following results were obtained: the power coefficient δ of the fatigue crack propagation rate [(dc)/(dN)] = AΔK5 is related with [(1)/(T)] as: δ = b1 + [(a1)/(kT)]. [(dc)/(dN)] shows Arrhenius type, and, however, different equation from usual stress dependent rate process equation. The trend is in good agreement with the dislocation dynamics theory of fatigue crack propagation.  相似文献   

10.
The condition of the initiation of fatigue crack growth in mixed mode conditions has been investigated by using precracked low carbon steel specimens.It is pointed out that, firstly, the critical condition of crack growth should be defined with regard to the modes of fatigue crack growth, i.e. shear mode and tensile mode. Secondly, it is proposed that the critical condition of fatigue crack growth is given by the local tensile stress and shearing stress at the notch tip determined by stress intensity factors KI and KII, and that this criterion is generally applicable to in-plane-loading conditions, i.e. Mode I, Mode II and Mixed Mode conditions.  相似文献   

11.
Strain fatigue crack growth rate was studied using center cracked specimens for 15CDV6 steel tempered at 200°C after quenching by means of the method which deflections were controlled to a sloping load vs deflection line. Cyclic J-integral values estimated from load vs deflection hysteresis loops are correlated with the growth rate. The relationship between them can be expressed by a simple power function da/dN = 2.5 × 10?4(ΔJ)1.38 The plastic portion ΔJp in J-integral is exponentially increased as the deflection increases, while the peak value of the elastic portion ΔJe appears as the deflection varies. These relations may provide a convenient way to use J-integral in engineering practice. A concept is proposed that “high strain rate induces cleavage”. The critical value of the strain rate for the steel tested is 10?4/sec. If the strain rate is higher than this value, cleavage predominates on the fracture surface. On the other hand, if it is lower than this value, dimples will prevail.  相似文献   

12.
A technique for modeling synergistic effects in fatigue crack propagation (FCP) is presented. First, a mission (load/temperature history) is segregated into elemental damage events. A simple three parameter model is then used to describe these events. The model coefficients are seen to be interrelated linear functions of FCP rate controlling variables such as frequency, temperature, stress ratio (σminmax), dwell, overload ratio (Poverload/Pmax) and cycles between overload. Finally, integrating event-by-event crack advance gives the expected component crack propagation life under mission cycling. Results of this procedure applied to gas turbine disk materials IN100 and Waspaloy are discussed to examine the accuracy of the model.  相似文献   

13.
14.
For high temperature creep, fatigue and creep-fatigue interaction, several authors have recently attempted to express crack growth rate in terms of stress intensity factor KI = αg, where a is the equivalent crack length as the sum of the initial notch length a0 and the actual crack length a1, that is, a = a0 + a1. On the other hand, it has been shown by Yokobori and Konosu that under the large scale yielding condition, the local stress distribution near the notch tip is given by the fracture mechanics parameter of g?(σg), where a is the cycloidal notch length, σg is the gross section stress and ?(σg) is a function of σg. Furthermore, when the crack growth from the initial notch is concerned, it is more reasonable to use the effective crack length aeff taking into account of the effect of the initial notch instead of the equivalent crack length a. Thus we believe mathematical formula for the crack growth rate under high temperature creep, fatigue and creep-fatigue interaction conditions may be expressed at least in principle as function of aeffσg, σg and temperature.In the present paper, the geometrical change of notch shape from the instant of load application was continuously observed during the tests without interruption under high temperature creep, fatigue and creep-fatigue interaction conditions. Also, the effective crack length aeff was calculated by the finite element method for the accurate estimation of local stress distribution near the tip of the crack initiated from the initial notch root. Furthermore, experimental data on crack growth rates previously obtained are analysed in terms of the parameter of aeff σg with gross section stresses and temperatures as parameters, respectively.  相似文献   

15.
From previous investigations of the mechanisms of both fracture and fatigue crack propagation, the static fracture model proposed by Lal and Weiss may be thought as reasonable for describing fatigue crack propagation in metals at both low and intermediate stress intensity factor ranges ΔK. Recent progress in fatigue crack propagation indicates that it is not only possible, but also necessary, to modify this static fracture model. Based on the modified static fracture model, the effective stress intensity factor range ΔKeff, which is defined as the difference between ΔK and the fatigue crack propagation threshold value Δth, is taken as the governing parameter for fatigue crack propagation. Utilising the estimates of the theoretical strengths of metals employed in industry, a new expression for fatigue crack propagation, which may be predicted from the tensile properties of the metals, has been derived. The correlation between the fatigue crack propagation rate and the tensile properties is thus revealed. The new expression fits the test results of fatigue crack propagation of steels below 10?3 mm/cycle and indicates well the effect of stress ratio on the fatigue crack propagation rate.  相似文献   

16.
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated using the local stress/strain at the crack tip by assuming that a small highly strained area x1, existing at the crack tip, is responsible for the fatigue crack growth, and that the fatigue crack growth may be regarded as the cumulation of successive crack re-initiations over a distance x1. It is shown that crack closure can be modelled using the effective contact zone g behind the crack tip. The model allows the fatigue crack growth rate over the near threshold and linear ranges of the general da/dN versus ΔK curve to be calculated. The fatigue crack growth retardation due to overload and fatigue crack arrest can also be analysed in terms of g and x1.Calculated fatigue crack growth rates are compared with experimental ones for low and high strength steel.  相似文献   

17.
Many experimental studies have been reported on the measurements of crack growth rate and the observation of crack growth behaviour under high temperature creep, fatigue and creep-fatigue interaction in literatures. However, many of them have been done in air atmosphere. Furthermore, in many of them the measurements of the crack growth rate have been carried out by interrupting intermittently the running of the testing machine. In such experiments the complex effects due to the atmosphere, the interruption period and the corresponding unloading operation for the crack length measurement might have been involved.In the present paper in order to eliminate such effects, series of experimental studies on the crack growth behaviour under creep, fatigue and creep-fatigue interaction conditions on 304 stainless steel have been carried out by using high temperature microscope and observing the crack length continuously during running the test without interruption in vacuum of 10?5mm Hg.Among the results, it was found that crack growth rates on a time basis, da/dt, under high temperature creep and creep-fatigue interaction conditions can not be described in terms of solely elastic stress intensity factor ki or only net section stress σnet, both independent of gross section stress σg. The relation between crack growth rate and stress intensity factor under high temperature fatigue condition changes with some trend according to gross section stress at lower KI level and it can be approximately described in terms of stress intensity factor KI only, at higher KI level. The threshold stress intensity factor and the threshold net section stress under high temperature creep, fatigue and creep-fatigue interaction conditions appears to be almost independent of temperature.  相似文献   

18.
Stress and strain field of a propagating fatigue crack and the resulting crack opening and closing behavior were analysed. It was found that a propagating fatigue crack was closed at tensile external loads due to the cyclically induced residual stresses. Strain range value Δ?y in the vicinity of the crack tip was found to be closely related with the effective stress intensity factor range ΔKeff which was determined on the basts of the analytical crack opening and closing behavior at its tip. Application of this analysis to the non-propagating fatigue crack problem and the fatigue crack propagation problems under variable stress amplitude conditions revealed that both Δ?y and ΔKeff were essential parameters governing fatigue crack growth rate.  相似文献   

19.
The effects of specimen thickness, stress ratio (R) and maximum stress intensity factor (Kmax) on crack closure (or opening) were studied using a 2219-T851 aluminum alloy. The crack length and the occurrence of crack closure were measured by an electrical potential method. The experimental work was carried out within the framework of linear-elastic fracture mechanics.The experimental results show that the onset of crack closure (or opening) dependes on R, Kmax), and specimen thickness. In terms of the “effective stress intensity range ratio” (U), as defined by Elber, the results show that U tends to increase for increasing R, decrease for increasing Kmax, and decrease with increasing specimen thickness. From these trends, it is shown that the “effective stress intensity range” (ΔKeff) does not always increase with increasing stress intensity range (ΔK).The experimental results show that crack closure cannot fully account for the effects of stress ratio, specimen thickness and Kmax on fatigue crack growth. The use of ΔKeff as a parameter for characterizing the mechanical driving force for fatigue crack growth is questioned.  相似文献   

20.
In a prior study [1], the fatigue crack propagation (FCP) response of a cast and an extruded aluminum alloy was examined as a function of mean stress and specimen orientation while crack closure data were collected. In this work, extensive electron fractographic studies were conducted on the previously generated fatigue fracture surfaces using both scanning and transmission electron microscopy. The threshold micromorphology revealed crisp, cleavage-like facets. Striation spacing measurements at intermediate and high ΔK levels were obtained to determine microscopic growth rates; these measurements were seen to vary with R ratio and were best correlated with ΔKEFF rather than ΔKAPP. Slope changes in the da/da-ΔK plots were identified and attempts made to establish correlations between the associated plastic zone sizes and microstructural dimensions. Of particular note, a stage IIa to IIb transition in the extruded material was found to correspond to a micromechanism change from faceted growth to striated growth when the reversed plastic zone size was similar to the subgrain dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号