首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic response of a central crack in a strip composite under normal impact is analyzed. The crack is oriented normally to the interfaces. Laplace and Fourier transform techniques are used to reduce the elastodynamic problem to a pair of dual integral equations. The integral equations are solved by using an integral transform technique and the result is expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time, the material properties and the geometrical parameters is discussed.  相似文献   

2.
The torsional impact response of a penny-shaped interface crack in a layered composite is considered in this study. The geometry of the composite consists of two bonded dissimilar elastic layers which are sandwiched between two half-spaces made of a different material. Laplace and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. These equations are solved by using an integral transform technique and the result is expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time, the material properties and the geometry parameters is discussed.  相似文献   

3.
The paper examines the elastodynamic response of an infinite two-dimensional orthotr- opic medium containing a central crack under impact shear loading. Laplace and Fourier integral transforms are employed to reduce the problem to a pair of dual integral equations in the Laplace transformed plane. These equations are reduced to integral differential equations, which have been solved in the low frequency domain by iterations. To determine time dependence, these equations are inverted to yield the dynamic stress intensity factor (SIF) for shear point force loading that corresponds to the weight function for the crack under shear loading. It is used to derive SIF for polynomial loading.  相似文献   

4.
Y. Shindo 《Acta Mechanica》1988,73(1-4):147-162
Summary The impact response of a crack in a semi-infinite body with a surface layer which is subjected to antiplane shear deformation is considered in this study. The semi-infinite body contains a crack near an interface. Using Laplace and Fourier transforms, the case of a crack perpendicular to the interface is reduced to a set of triple integral equations in the Laplace transform plane. The solution to the triple integral equations is then expressed in terms of a singular integral equation of the first kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factors at the crack tips are obtained for several values of time, material constants, and geometrical parameters.With 8 Figures  相似文献   

5.
Impact response of a finite crack in an orthotropic strip   总被引:1,自引:0,他引:1  
Summary The elastodynamic response of a finite crack in an infinite orthotropic strip under normal impact is investigated in this study. The crack is situated symmetrically and oriented in a direction normal to the edges of the strip. Laplace and Hankel transforms are used to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution to the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the dynamic stress intensity factor for some fiber-reinforced composite materials are obtained and the results are graphed to display the influence of the material orthotropy.  相似文献   

6.
Impact response of a finite crack in an orthotropic piezoelectric ceramic   总被引:1,自引:0,他引:1  
Y. Shindo  F. Narita  E. Ozawa 《Acta Mechanica》1999,137(1-2):99-107
Summary The transient dynamic stress intensity factor and dynamic energy release rate were determined for a cracked piezoelectric ceramic under normal impact in this study. A plane step pulse strikes the crack and stress wave diffraction takes place. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion technique is used to compute the values of the dynamic stress intensity factor and the dynamic energy release rate for some piezoelectric ceramics, and the results are graphed to display the electroelastic interactions.  相似文献   

7.
Scattering of transient horizontal shear waves by a finite crack located at the interface of two bonded dissimilar elastic solids is investigated in this study. Laplace and Fourier transform technique is used to reduce the problem to a pair of dual integral equations. The solution of the dual integral equation is expressed in terms of the Fredholm integral equation of the second kind having the kernel of a finite integration. Dynamic stress intensity factor is obtained as a function of the material and geometric properties and time.  相似文献   

8.
The axisymmetric response of a flat annular crack in an infinite medium subjected to normal impact load is investigated in this study. A step stress is applied to the crack surface. The singular solution is equivalent to solutions of the problem of diffraction of normally incident tension wave by a flat annular crack, and the problem of the sudden appearance of a flat annular crack in a uniform tensile stress field. Laplace and Hankel transforms are used to reduce the problem to the solution of a set of triple integral equations in the Laplace transform domain. These equations are solved by using a integral transform technique and the result is expressed in terms of a singular integral equation of the first kind with the kernel which is improved by means of a contour integration on the Riemann surface. A numerical Laplace inversion routine is used to recover the time dependence of the solution. Numerical results of the dynamic stress intensity factor are obtained to show the influence of inertia, the ratio of the inner radius to the outer one and Poisson's ratio on the load transmission to the crack tip.  相似文献   

9.
A three-dimensional solution is presented for the transient response of an infinite plate which contains a rectangular crack. The Laplace and Fourier transforms are used to reduce the problem to a pair of dual integral equations. These equations are solved with the series expansion method. The stress intensity factors are defined in the Laplace transform domain, and they are inverted numerically in the physical space.  相似文献   

10.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

11.
In this paper the torsional impact response of an external circular crack in an infinite medium bonded to a cylindrical inclusion has been investigated. The infinite medium and cylindrical inclusion are assumed to be of different homogeneous isotropie elastic materials. Laplace and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. These equations are solved by using an integral transform technique and the results are expressed in terms of a Fredhol integral equation of the second kind. By solving Fredholm integral equation of the second kind the numerical results for the dynamic stress-intensity factor are obtained which measure the load transmission on the crack.  相似文献   

12.
The time evolution of the stress intensity factors (S.I.F's) at both tips of a finite crack lying near the interface of a viscoelastic anisotropic bimaterial, is studied. The simultaneous integral equations for the dislocation density of the crack developed in [2], are now used in the Laplace transformed domain. Their numerical solution and the solution via Neumann series are used for the determination of the Laplace trasformed S.I.F's. In the case of rectilinear anisotropies the latter are extracted from the M(p) integral which has been evaluated along a circle at infinity and along the interface. Numerical results for the real time dependence of the S.I.F's for two different anisotropies and geometries are also discussed.  相似文献   

13.
The integral Laplace transformation and the reduction of differential equations to Volterra integral equations are used to obtain a solution to the equation of the packing and gas temperature distribution over the thickness of the section of a rotary radially sectioned regenerator with a dispersed packing in relation to time for the initial period of operation of the regenerator.  相似文献   

14.
Elastodynamics response of an infinite orthotropic medium containing a central crack under impact loading has been investigated. Laplace and Fourier transforms have been employed to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform domain which has finally been solved by the method of iteration in the low frequency case. Analytic expressions for the stress intensity factors and crack opening displacement are also obtained for low frequency.  相似文献   

15.
A meshless local Petrov–Galerkin (MLPG) method is applied to solve wave propagation problems of three-dimensional poroelastic solids with Biot's theory. The Laplace transform is used to eliminate the time dependence of the field variables for the transient elastodynamic case. A weak formulation with a unit step function transforms the set of governing equations into local integral equations on local subdomains. The meshless approximation based on the radial basis function (RBF) is employed for the implementation. Unknown Laplace-transformed quantities, including displacements of solid frame and pressure in the fluid, are computed from the local boundary integral equations. The time-dependent values are obtained by Durbin's inversion technique. In addition, a one-dimensional poroelasticity analytical solution is derived in this paper and introduced for comparison. Several numerical examples demonstrate the efficiency and accuracy of the proposed method.  相似文献   

16.
Summary The problem of diffraction of anti-plane shear waves by a running crack of finite length is investigated analytically. Fourier transform method is used to solve the mixed boundary value problem which reduces to two pairs of dual integral equations. These dual integral equations are further reduced to a pair of Fredholm integral equations of the second kind. The iterative solution of the integral equations has been obtained for small wave number. The solution is used to calculate the dynamic stress intensity factor at the edge of the crack.With 2 Figures  相似文献   

17.
This paper describes the solution to transient incompressible two-dimensional Navier–Stokes equations in primitive variables by the dual reciprocity boundary element method. The coupled set of mass and momentum equations is structured by the fundamental solution of the Laplace equation. The dual reciprocity method is based on the augmented thin plate splines. All derivatives involved are calculated through integral representation formulas. Numerical example include convergence studies with different mesh size for the classical lid-driven cavity problem at Re=100 and comparison with the results obtained through calculation of the derivatives from global interpolation formulas. The accuracy of the solution is assessed by comparison with the Ghia–Ghia–Shin finite difference solution as a reference.  相似文献   

18.
In this paper the diffusion equation is solved in two-dimensional geometry by the dual reciprocity boundary element method (DRBEM). It is structured by fully implicit discretization over time and by weighting with the fundamental solution of the Laplace equation. The resulting domain integral of the diffusive term is transformed into two boundary integrals by using Green's second identity, and the domain integral of the transience term is converted into a finite series of boundary integrals by using dual reciprocity interpolation based on scaled augmented thin plate spline global approximation functions. Straight line geometry and constant field shape functions for boundary discretization are employed. The described procedure results in systems of equations with fully populated unsymmetric matrices. In the case of solving large problems, the solution of these systems by direct methods may be very time consuming. The present study investigates the possibility of using iterative methods for solving these systems of equations. It was demonstrated that Krylov-type methods like CGS and GMRES with simple Jacobi preconditioning appeared to be efficient and robust with respect to the problem size and time step magnitude. This paper can be considered as a logical starting point for research of iterative solutions to DRBEM systems of equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The 3-D dynamic problem is presented for an infinite elastic medium weakened by four plane rectangular cracks of equal size. The surfaces of the cracks are loaded by a uniform pressure with Heaviside-function time dependence. Fourier-Laplace transform technique is utilized to reduce the problem to a solution of two simultaneous integral equations which can be solved by using the series expansion method. The Laplace transformed stress intensity factors are defined and are inverted numerically in the physical space.  相似文献   

20.
Impact response of a cracked soft ferromagnetic medium   总被引:2,自引:0,他引:2  
A solution is given for the problem of an infinite soft ferromagnetic solid containing a central crack subjected to normal impact load. The solid is permeated by a uniform magnetostatic field normal to the crack surface. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of integral equations in the Laplace transformed plane. A numerical Laplace inversion technique is used to compute the values of the dynamic stress-intensity factor, and the results are compared with the corresponding elastodynamic values to reveal the influence of magnetic field on the dynamic stress-intensity factor. The dynamic stress intensity factor is found to increase with increasing values of the magnetic field.With 4 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号